91 research outputs found

    Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising

    Get PDF
    In real-time display advertising, ad slots are sold per impression via an auction mechanism. For an advertiser, the campaign information is incomplete --- the user responses (e.g, clicks or conversions) and the market price of each ad impression are observed only if the advertiser's bid had won the corresponding ad auction. The predictions, such as bid landscape forecasting, click-through rate (CTR) estimation, and bid optimisation, are all operated in the pre-bid stage with full-volume bid request data. However, the training data is gathered in the post-bid stage with a strong bias towards the winning impressions. A common solution for learning over such censored data is to reweight data instances to correct the discrepancy between training and prediction. However, little study has been done on how to obtain the weights independent of previous bidding strategies and consequently integrate them into the final CTR prediction and bid generation steps. In this paper, we formulate CTR estimation and bid optimisation under such censored auction data. Derived from a survival model, we show that historic bid information is naturally incorporated to produce Bid-aware Gradient Descents (BGD) which controls both the importance and the direction of the gradient to achieve unbiased learning. The empirical study based on two large-scale real-world datasets demonstrates remarkable performance gains from our solution. The learning framework has been deployed on Yahoo!'s real-time bidding platform and provided 2.97% AUC lift for CTR estimation and 9.30% eCPC drop for bid optimisation in an online A/B test

    Real-Time Bidding by Reinforcement Learning in Display Advertising

    Get PDF
    The majority of online display ads are served through real-time bidding (RTB) --- each ad display impression is auctioned off in real-time when it is just being generated from a user visit. To place an ad automatically and optimally, it is critical for advertisers to devise a learning algorithm to cleverly bid an ad impression in real-time. Most previous works consider the bid decision as a static optimization problem of either treating the value of each impression independently or setting a bid price to each segment of ad volume. However, the bidding for a given ad campaign would repeatedly happen during its life span before the budget runs out. As such, each bid is strategically correlated by the constrained budget and the overall effectiveness of the campaign (e.g., the rewards from generated clicks), which is only observed after the campaign has completed. Thus, it is of great interest to devise an optimal bidding strategy sequentially so that the campaign budget can be dynamically allocated across all the available impressions on the basis of both the immediate and future rewards. In this paper, we formulate the bid decision process as a reinforcement learning problem, where the state space is represented by the auction information and the campaign's real-time parameters, while an action is the bid price to set. By modeling the state transition via auction competition, we build a Markov Decision Process framework for learning the optimal bidding policy to optimize the advertising performance in the dynamic real-time bidding environment. Furthermore, the scalability problem from the large real-world auction volume and campaign budget is well handled by state value approximation using neural networks.Comment: WSDM 201

    Deep Landscape Forecasting for Real-time Bidding Advertising

    Full text link
    The emergence of real-time auction in online advertising has drawn huge attention of modeling the market competition, i.e., bid landscape forecasting. The problem is formulated as to forecast the probability distribution of market price for each ad auction. With the consideration of the censorship issue which is caused by the second-price auction mechanism, many researchers have devoted their efforts on bid landscape forecasting by incorporating survival analysis from medical research field. However, most existing solutions mainly focus on either counting-based statistics of the segmented sample clusters, or learning a parameterized model based on some heuristic assumptions of distribution forms. Moreover, they neither consider the sequential patterns of the feature over the price space. In order to capture more sophisticated yet flexible patterns at fine-grained level of the data, we propose a Deep Landscape Forecasting (DLF) model which combines deep learning for probability distribution forecasting and survival analysis for censorship handling. Specifically, we utilize a recurrent neural network to flexibly model the conditional winning probability w.r.t. each bid price. Then we conduct the bid landscape forecasting through probability chain rule with strict mathematical derivations. And, in an end-to-end manner, we optimize the model by minimizing two negative likelihood losses with comprehensive motivations. Without any specific assumption for the distribution form of bid landscape, our model shows great advantages over previous works on fitting various sophisticated market price distributions. In the experiments over two large-scale real-world datasets, our model significantly outperforms the state-of-the-art solutions under various metrics.Comment: KDD 2019. The reproducible code and dataset link is https://github.com/rk2900/DL

    Optimal Real-Time Bidding for Display Advertising

    Get PDF
    Real-Time Bidding (RTB) is revolutionising display advertising by facilitating a real-time auction for each ad impression. As they are able to use impression-level data, such as user cookies and context information, advertisers can adaptively bid for each ad impression. Therefore, it is important that an advertiser designs an effective bidding strategy which can be abstracted as a function - mapping from the information of a specific ad impression to the bid price. Exactly how this bidding function should be designed is a non-trivial problem. It is a problem which involves multiple factors, such as the campaign-specific key performance indicator (KPI), the campaign lifetime auction volume and the budget. This thesis is focused on the design of automatic solutions to this problem of creating optimised bidding strategies for RTB auctions: strategies which are optimal, that is, from the perspective of an advertiser agent - to maximise the campaign's KPI in relation to the constraints of the auction volume and the budget. The problem is mathematically formulated as a functional optimisation framework where the optimal bidding function can be derived without any functional form restriction. Beyond single-campaign bid optimisation, the proposed framework can be extended to multi-campaign cases, where a portfolio-optimisation solution of auction volume reallocation is performed to maximise the overall profit with a controlled risk. On the model learning side, an unbiased learning scheme is proposed to address the data bias problem resulting from the ad auction selection, where we derive a "bid-aware'' gradient descent algorithm to train unbiased models. Moreover, the robustness of achieving the expected KPIs in a dynamic RTB market is solved with a feedback control mechanism for bid adjustment. To support the theoretic derivations, extensive experiments are carried out based on large-scale real-world data. The proposed solutions have been deployed in three commercial RTB systems in China and the United States. The online A/B tests have demonstrated substantial improvement of the proposed solutions over strong baselines

    Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting

    Get PDF
    The most significant progress in recent years in online display advertising is what is known as the Real-Time Bidding (RTB) mechanism to buy and sell ads. RTB essentially facilitates buying an individual ad impression in real time while it is still being generated from a user’s visit. RTB not only scales up the buying process by aggregating a large amount of available inventories across publishers but, most importantly, enables direct targeting of individual users. As such, RTB has fundamentally changed the landscape of digital marketing. Scientifically, the demand for automation, integration and optimisation in RTB also brings new research opportunities in information retrieval, data mining, machine learning and other related fields. In this monograph, an overview is given of the fundamental infrastructure, algorithms, and technical solutions of this new frontier of computational advertising. The covered topics include user response prediction, bid landscape forecasting, bidding algorithms, revenue optimisation, statistical arbitrage, dynamic pricing, and ad fraud detection

    Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting

    Get PDF
    The most significant progress in recent years in online display advertising is what is known as the Real-Time Bidding (RTB) mechanism to buy and sell ads. RTB essentially facilitates buying an individual ad impression in real time while it is still being generated from a user’s visit. RTB not only scales up the buying process by aggregating a large amount of available inventories across publishers but, most importantly, enables direct targeting of individual users. As such, RTB has fundamentally changed the landscape of digital marketing. Scientifically, the demand for automation, integration and optimisation in RTB also brings new research opportunities in information retrieval, data mining, machine learning and other related fields. In this monograph, an overview is given of the fundamental infrastructure, algorithms, and technical solutions of this new frontier of computational advertising. The covered topics include user response prediction, bid landscape forecasting, bidding algorithms, revenue optimisation, statistical arbitrage, dynamic pricing, and ad fraud detection

    Decision Trees for Optimization Display Campaigns for Conversion

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Marketing IntelligenceDigital technology's evolution has impacted the marketing landscape and brought both opportunities and challenges for advertisers. Traditional marketing strategies have been shown to be supported by, and in some cases replaced by digital marketing techniques. Even though there are many different channels and forms for online advertising today, programmatic advertising has shown a lot of potential, particularly in terms of automation and algorithm development for buying ad space in real-time. This study aims to explore the application of Decision Tree Algorithms in optimizing display campaigns for conversion and the competitive benefits they provide over traditional optimization methods, on the programmatic exchange. In order to evaluate the effectiveness of the Decision Tree Algorithm, the research will be divided into three phases: phases 1, 2 and 3. Where phases 1 and 2 will focus on testing different bid modifier ranges to reach the best outcome. And, in phase 3 the two campaigns, utilizing the Decision Tree Algorithm and the Standard Optimization, will be directly compared with relevant KPIs, in an A/B test environment. The results obtained showed that after the systematic testing process of multiple bid modifier ranges, it was possible to determine that the best-performing one has a range of 0,1 to 1,5, which, in phase 3, outperformed the standard optimization and generated more 21% clicks, 54% conversions and a 28% higher conversion rate
    • …
    corecore