3 research outputs found

    Advances in Optofluidics

    Get PDF
    Optofluidics a niche research field that integrates optics with microfluidics. It started with elegant demonstrations of the passive interaction of light and liquid media such as liquid waveguides and liquid tunable lenses. Recently, the optofluidics continues the advance in liquid-based optical devices/systems. In addition, it has expanded rapidly into many other fields that involve lightwave (or photon) and liquid media. This Special Issue invites review articles (only review articles) that update the latest progress of the optofluidics in various aspects, such as new functional devices, new integrated systems, new fabrication techniques, new applications, etc. It covers, but is not limited to, topics such as micro-optics in liquid media, optofluidic sensors, integrated micro-optical systems, displays, optofluidics-on-fibers, optofluidic manipulation, energy and environmental applciations, and so on

    Bio-oriented Micro- and Nano- Structures Based on Stimuli-responsive Polymers

    Get PDF
    Nowadays, the ability to pattern surfaces on the micro- and nano- scale is the basis for a wide range of research fields. Over last few decades, a lot of processing technologies offer the possibility to fabricate complex 2D and 3D polymeric designs which are mostly static in nature since they cannot be physically and chemically modified once fabricated. The aim of the present thesis is to overcome such a limitation, exploiting stimuli-responsive materials (Chapter I). We allow to engineer polymeric architectures adding interesting functionalities, by providing an active manipulation of pre-structured systems, which could be helpfully in a wide variety of applications, such as biosensing and cell conditioning. In the first part of the present dissertation (Chapter II), a thermos-sensitive material is employed. We investigate the thermo-responsive behavior of Poly(N-isopropylacrylamide) (pNIPAAm)-based crosslinkable hydrogel as active binding matrix in optical biosensors. In this study, we propose an extension of surface plasmon resonance (SPR) and optical waveguide mode (OWS) spectroscopy, for in situ observation of nano-patterned hydrogel film that are allowed to swell and collapse by varying the external temperature of the aqueous environment. Weak refractive index contrast of hydrogel structures arranged in periodic pattern, is generally associated with intrinsically low diffraction efficiency. In order to enhance the intensity of diffracted light, the surface is probed by resonantly excited optical waveguide modes, taking advantage of the fact that the hydrogel can serve as optical waveguide (HOW) enabling the excitation of additional modes besides surface plasmons. Thus, we provide a hydrogel optical waveguide-enhanced diffraction measurements, taking advantage of strong electromagnetic field intensity enhancements that amplifies the weak diffracted light intensity. The main part of the thesis is focused in the study of azopolymer-containing materials, a specific class of light-responsive materials. Upon photon absorption, azobenzene undergo reversible trans-cis photoisomerization, which induces a substantial geometrical change of its molecular structure, that can be translated into larger-scale movements of the material below the glass transition temperature (Tg) of the polymer. In Chapter III, by exploiting the light-induced mass migration phenomenon, we demonstrate that an azopolymeric film patterned by soft imprinting technique, can be anisotropically deformed and consequent restored in its initial shape via single irradiation just by controlling the polarization state of the incident laser beam. We also propose that the light-driven morphological manipulation can induce anisotropic wettability changes. Lastly, a polarization driven birefringence effect on flat and structured surfaces is discussed. Chapter IV focuses in the design of novel azopolymeric systems, where the optical response is provided by azobenzene molecules, which doped two different host materials. The photo-responsive behavior and potential applications of azo compounds incorporated into either a soft elastomeric and in rigid matrix is discussed. Azo-embedded poly(dimethylsiloxane) (PDMS) is studied as tunable optical lens and an azo-doped photocurable commercial polymeric resin is developed to study the photo-mechanical transduction of a 3D suspended membrane fabricated by two photon lithography technique. In Chapter V, we propose a light-deformable azopolymeric micro-pillars patterned substrate as a biocompatible and “smart” platform for dynamic material-cell observation in 2D environment, modified by a holographic optical conditioning. The aim is to observe by time-lapse acquisitions, how an in situ deformation of a pre-patterned structure can influence cell functions and fate. Finally, in Chapter VI, general remarks of the present work are discussed, and directions for future perspective are summarized
    corecore