149 research outputs found

    Algoritmos evolutivos para alguns problemas em telecomunicações

    Get PDF
    Orientadores: Flavio Keidi Miyazawa, Mauricio Guilherme de Carvalho ResendeTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Nos últimos anos, as redes de telecomunicação tem experienciado um grande aumento no fluxo de dados. Desde a utilização massiva de vídeo sob demanda até o incontável número de dispositivos móveis trocando texto e vídeo, o tráfego alcançou uma escala capaz de superar a capacidade das redes atuais. Portanto, as companhias de telecomunicação ao redor do mundo tem sido forçadas a aumentar a capacidade de suas redes para servir esta crescente demanda. Como o custo de instalar uma infraestrutura de rede é geralmente muito grande, o projeto de redes usa fortemente ferramentas de otimização para manter os custos tão baixos quanto possível. Nesta tese, nós analisamos vários aspectos do projeto e implementação de redes de telecomunicação. Primeiramente, nós apresentamos um novo problema de projeto de redes usado para servir demandas sem fio de dispositivos móveis e rotear tal tráfego para a rede principal. Tais redes de acesso são baseadas em tecnologias sem fio modernos como Wi-Fi, LTE e HSPA. Este problema consideramos várias restrições reais e é difícil de ser resolvido. Nós estudamos casos reais nas vizinhanças de uma grande cidade nos Estados Unidos. Em seguida, nós apresentamos uma variação do problema de localização de hubs usado para modelar as redes principais (backbones ou laços centrais). Este problema também pode ser utilizado para modelar redes de transporte de cargas e passageiros. Nós também estudamos o problema de clusterização correlacionada com sobreposições usado para modelar o comportamento dos usuários quando utilizam seus equipamentos móveis. Neste problema, nós podemos rotular um objeto usando múltiplos rótulos e analisar a conexão entre eles. Este problema é adequado para análise de mobilidade de equipamentos que pode ser usada para estimar o tráfego em uma dada região. E finalmente, nós analisamos o licenciamento de espectro sobre uma perspectiva governamental. Nestes casos, uma agência do governo deseja vender licenças para companhias de telecomunicação para que operem em uma dada faixa de espectro. Este processo usualmente é conduzido usando leilões combinatoriais. Para todos problemas, nós propomos algoritmos genéticos de chaves aleatórias viciadas e modelos de programação linear inteira mista para resolvê-los (exceto para o problema de clusterização correlacionada com sobreposição, devido sua natureza não-linear). Os algoritmos que propusemos foram capazes de superar algoritmos do estado da arte para todos problemasAbstract: Cutting and packing problems are common problems that occur in many industry and business process. Their optimized resolution leads to great profits in several sectors. A common problem, that occur in textil and paper industries, is to cut a strip of some material to obtain several small items, using the minimum length of material. This problem, known by Two Dimensional Strip Packing Problem (2SP), is a hard combinatorial optimization problem. In this work, we present an exact algorithm to 2SP, restricted to two staged cuts (known by Two Dimensional Level Strip Packing, 2LSP). The algorithm uses the branch-and-price technique, and heuristics based on approximation algorithms to obtain upper bounds. The algorithm obtained optimal or almost optimal for small and moderate sized instancesAbstract: In last twenty years, telecommunication networks have experienced a huge increase in data utilization. From massive on-demand video to uncountable mobile devices exchanging text and video, traffic reached scales that overcame the network capacities. Therefore, telecommunication companies around the world have been forced to increase their capacity to serve this increasing demand. As the cost to deploy network infrastructure is usually very large, the design of a network heavily uses optimization tools to keep costs as low as possible. In this thesis, we analyze several aspects of the design and deployment of communication networks. First, we present a new network design problem used to serve wireless demands from mobile devices and route the traffic to the core network. Such access networks are based on modern wireless access technologies such as Wi-Fi, LTE, and HSPA. This problem has several real world constraints and it is hard to solve. We study real cases of the vicinity of a large city in the United States. Following, we present a variation of the hub-location problem used to model these core networks. Such problem is also suitable to model transportation networks. We also study the overlapping correlation clustering problem used to model the user's behavior when using their mobile devices. In such problem, one can label an object with multiple labels and analyzes the connections between them. Although this problem is very generic, it is suitable to analyze device mobility which can be used to estimate traffic in geographical regions. Finally, we analyze spectrum licensing from a governmental perspective. In these cases, a governmental agency wants to sell rights for telecommunication companies to operate over a given spectrum range. This process usually is conducted using combinatorial auctions. For all problems we propose biased random-key genetic algorithms and mixed integer linear programming models (except in the case of the overlapping correlation clustering problem due its non-linear nature). Our algorithms were able to overcome the state of the art algorithms for all problemsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates

    Get PDF
    The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. The resulting algorithm configuration (AC) problem has attracted much attention from the machine learning community. However, the proper evaluation of new AC procedures is hindered by two key hurdles. First, AC benchmarks are hard to set up. Second and even more significantly, they are computationally expensive: a single run of an AC procedure involves many costly runs of the target algorithm whose performance is to be optimized in a given AC benchmark scenario. One common workaround is to optimize cheap-to-evaluate artificial benchmark functions (e.g., Branin) instead of actual algorithms; however, these have different properties than realistic AC problems. Here, we propose an alternative benchmarking approach that is similarly cheap to evaluate but much closer to the original AC problem: replacing expensive benchmarks by surrogate benchmarks constructed from AC benchmarks. These surrogate benchmarks approximate the response surface corresponding to true target algorithm performance using a regression model, and the original and surrogate benchmark share the same (hyper-)parameter space. In our experiments, we construct and evaluate surrogate benchmarks for hyperparameter optimization as well as for AC problems that involve performance optimization of solvers for hard combinatorial problems, drawing training data from the runs of existing AC procedures. We show that our surrogate benchmarks capture overall important characteristics of the AC scenarios, such as high- and low-performing regions, from which they were derived, while being much easier to use and orders of magnitude cheaper to evaluate

    Análisis del problema de elección del ganador en subastas combinatorias. Aplicaciones a problemas de Ingeniería de Organización.

    Get PDF
    En la amplia literatura referida a las subastas combinatorias, las características y los mecanismos asociados a estas, destaca el hincapié a la hora de mencionar la resolución de un importante problema asociado a estas subastas. Este es el problema de determinación del ganador, “Winner Determination Problem” (WDP). Debido a ese gran interés, en el presente trabajo se ha realizado una extensa búsqueda referida a las subastas combinatorias y a los distintos algoritmos utilizados para la resolución del Winner Determination Problem, particularmente en problemas relacionados con el ámbito de la ingeniería. El fin de este trabajo es acercarnos un poco más a este problema e intentar encontrar una metodología para la óptima ejecución de este tipo de subastas. Por otro lado, se comparan distintos mecanismos de subastas combinatorias, creando para ello un marco analítico que nos ayude a entender mejor sus numerosas características y nos permita identificar sus fortalezas y debilidades.In the extensive literature referring to combinatorial auctions, their characteristics and mechanisms associated with them, emphasis is placed on the resolution of an important problem associated with these auctions. This is the problem of determining the winner, “Winner Determination Problem” (WDP). Due to this great interest, in the present work an extensive search has been made regarding combinatorial auctions and the different algorithms used for the resolution of the Winner Determination Problem, particularly in problems related to the engineering field. The aim of this work is to get a little closer to this problem and try to find a methodology for the optimal execution of this type of auctions. On the other hand, different combinatorial auction mechanisms are compared, and an analytical framework is built with the aim of helping us to better understand their many characteristics and to allow us to identify their strengths and weaknesses.Departamento de Organización de Empresas y Comercialización e Investigación de MercadosGrado en Ingeniería en Organización Industria

    Addressing stability issues in mediated complex contract negotiations for constraint-based, non-monotonic utility spaces

    Get PDF
    Negotiating contracts with multiple interdependent issues may yield non- monotonic, highly uncorrelated preference spaces for the participating agents. These scenarios are specially challenging because the complexity of the agents’ utility functions makes traditional negotiation mechanisms not applicable. There is a number of recent research lines addressing complex negotiations in uncorrelated utility spaces. However, most of them focus on overcoming the problems imposed by the complexity of the scenario, without analyzing the potential consequences of the strategic behavior of the negotiating agents in the models they propose. Analyzing the dynamics of the negotiation process when agents with different strategies interact is necessary to apply these models to real, competitive environments. Specially problematic are high price of anarchy situations, which imply that individual rationality drives the agents towards strategies which yield low individual and social welfares. In scenarios involving highly uncorrelated utility spaces, “low social welfare” usually means that the negotiations fail, and therefore high price of anarchy situations should be avoided in the negotiation mechanisms. In our previous work, we proposed an auction-based negotiation model designed for negotiations about complex contracts when highly uncorrelated, constraint-based utility spaces are involved. This paper performs a strategy analysis of this model, revealing that the approach raises stability concerns, leading to situations with a high (or even infinite) price of anarchy. In addition, a set of techniques to solve this problem are proposed, and an experimental evaluation is performed to validate the adequacy of the proposed approaches to improve the strategic stability of the negotiation process. Finally, incentive-compatibility of the model is studied.Spain. Ministerio de Educación y Ciencia (grant TIN2008-06739-C04-04

    Robust & decentralized project scheduling

    Get PDF

    Market_based Framework for Mobile Surveillance Systems

    Get PDF
    The active surveillance of public and private sites is increasingly becoming a very important and critical issue. It is therefore, imperative to develop mobile surveillance systems to protect these sites. Modern surveillance systems encompass spatially distributed mobile and static sensors in order to provide effective monitoring of persistent and transient objects and events in a given Area Of Interest (AOI). The realization of the potential of mobile surveillance requires the solution of different challenging problems such as task allocation, mobile sensor deployment, multisensor management, cooperative object detection and tracking, decentralized data fusion, and interoperability and accessibility of system nodes. This thesis proposes a market-based framework that can be used to handle different problems of mobile surveillance systems. Task allocation and cooperative target-tracking are studied using the proposed framework as two challenging problems of mobile surveillance systems. These challenges are addressed individually and collectively

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality
    corecore