2,013 research outputs found

    Biased Multiobjective Optimization and Decomposition Algorithm

    Get PDF
    The bias feature is a major factor that makes a multiobjective optimization problem (MOP) difficult for multiobjective evolutionary algorithms (MOEAs). To deal with this problem feature, an algorithm should carefully balance between exploration and exploitation. The decomposition-based MOEA decomposes an MOP into a number of single objective subproblems and solves them in a collaborative manner. Single objective optimizers can be easily used in this algorithm framework. Covariance matrix adaptation evolution strategy (CMA-ES) has proven to be able to strike good balance between the exploration and the exploitation of search space. This paper proposes a scheme to use both differential evolution (DE) and covariance matrix adaptation in the MOEA based on decomposition. In this scheme, single objective optimization problems are clustered into several groups. To reduce the computational overhead, only one subproblem from each group is selected to optimize by CMA-ES while other subproblems are optimized by DE. When an evolution strategy procedure meets some stopping criteria, it will be reinitialized and used for solving another subproblem in the same group. A set of new multiobjective test problems with bias features are constructed in this paper. Extensive experimental studies show that our proposed algorithm is suitable for dealing with problems with biases

    Methods for many-objective optimization: an analysis

    Get PDF
    Decomposition-based methods are often cited as the solution to problems related with many-objective optimization. Decomposition-based methods employ a scalarizing function to reduce a many-objective problem into a set of single objective problems, which upon solution yields a good approximation of the set of optimal solutions. This set is commonly referred to as Pareto front. In this work we explore the implications of using decomposition-based methods over Pareto-based methods from a probabilistic point of view. Namely, we investigate whether there is an advantage of using a decomposition-based method, for example using the Chebyshev scalarizing function, over Paretobased methods

    Scalarizing Functions in Bayesian Multiobjective Optimization

    Get PDF
    Scalarizing functions have been widely used to convert a multiobjective optimization problem into a single objective optimization problem. However, their use in solving (computationally) expensive multi- and many-objective optimization problems in Bayesian multiobjective optimization is scarce. Scalarizing functions can play a crucial role on the quality and number of evaluations required when doing the optimization. In this article, we study and review 15 different scalarizing functions in the framework of Bayesian multiobjective optimization and build Gaussian process models (as surrogates, metamodels or emulators) on them. We use expected improvement as infill criterion (or acquisition function) to update the models. In particular, we compare different scalarizing functions and analyze their performance on several benchmark problems with different number of objectives to be optimized. The review and experiments on different functions provide useful insights when using and selecting a scalarizing function when using a Bayesian multiobjective optimization method

    An adaptation reference-point-based multiobjective evolutionary algorithm

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.It is well known that maintaining a good balance between convergence and diversity is crucial to the performance of multiobjective optimization algorithms (MOEAs). However, the Pareto front (PF) of multiobjective optimization problems (MOPs) affects the performance of MOEAs, especially reference point-based ones. This paper proposes a reference-point-based adaptive method to study the PF of MOPs according to the candidate solutions of the population. In addition, the proportion and angle function presented selects elites during environmental selection. Compared with five state-of-the-art MOEAs, the proposed algorithm shows highly competitive effectiveness on MOPs with six complex characteristics

    Application of multiobjective genetic programming to the design of robot failure recognition systems

    Get PDF
    We present an evolutionary approach using multiobjective genetic programming (MOGP) to derive optimal feature extraction preprocessing stages for robot failure detection. This data-driven machine learning method is compared both with conventional (nonevolutionary) classifiers and a set of domain-dependent feature extraction methods. We conclude MOGP is an effective and practical design method for failure recognition systems with enhanced recognition accuracy over conventional classifiers, independent of domain knowledge
    • …
    corecore