48,970 research outputs found

    Value of Travel Time Reliability: A review of current evidence

    Get PDF
    Travel time reliability is a fundamental factor in travel behavior. It represents the temporal uncertainty experienced by users in their movement between any two nodes in a network. The importance of the time reliability depends on the penalties incurred by the users. In road networks, travelers consider the existence of a trip travel time uncertainty in different choice situations (departure time, route, mode, and others). In this paper, a systematic review of the current state of research in travel time reliability, and more explicitly in the value of travel time reliability is presented. Moreover, a meta-analysis is performed in order to determine the reasons behind the discrepancy among the reliability estimates.variability, reliability, travel time, scheduling.

    Spike detection using the continuous wavelet transform

    Get PDF
    This paper combines wavelet transforms with basic detection theory to develop a new unsupervised method for robustly detecting and localizing spikes in noisy neural recordings. The method does not require the construction of templates, or the supervised setting of thresholds. We present extensive Monte Carlo simulations, based on actual extracellular recordings, to show that this technique surpasses other commonly used methods in a wide variety of recording conditions. We further demonstrate that falsely detected spikes corresponding to our method resemble actual spikes more than the false positives of other techniques such as amplitude thresholding. Moreover, the simplicity of the method allows for nearly real-time execution

    Bayesian three-dimensional reconstruction of toothed whale trajectories: Passive acoustics assisted with visual and tagging measurements

    Get PDF
    The author describes and evaluates a Bayesian method to reconstruct three-dimensional toothed whale trajectories from a series of echolocation signals. Localization by using passive acoustic data (time of arrival of source signals at receptors) is assisted by using visual data (coordinates of the whale when diving and resurfacing) and tag information (movement statistics). The efficiency of the Bayesian method is compared to the standard minimum mean squared error statistical approach by comparing the reconstruction results of 48 simulated sperm whale (Physeter macrocephalus) trajectories. The use of the advanced Bayesian method reduces bias (standard deviation) with respect to the standard method up to a factor of 8.9 (13.6). The author provides open-source software which is functional with acoustic data which would be collected in the field from any three-dimensional receptor array design. This approach renews passive acoustics as a valuable tool to study the underwater behavior of toothed whales

    Destination-Language Proficiency in Cross-National Perspective: A Study of Immigrant Groups in Nine Western Countries

    Get PDF
    Immigrants’ destination-language proficiency has been typically studied from a microperspective in a single country. In this article, the authors examine the role of macrofactors in a cross-national perspective. They argue that three groups of macrolevel factors are important: the country immigrants settle in (“destination” effect), the sending nation (“origin” effect), and the combination between origin and destination (“setting” or “community” effect). The authors propose a design that simultaneously observes multiple origin groups in multiple destinations. They present substantive hypotheses about language proficiency and use them to develop a series of macrolevel indicators. The authors collected and standardized 19 existing immigrant surveys for nine Western countries. Using multilevel techniques, their analyses show that origins, destinations, and settings play a significant role in immigrants’ language proficiency.

    Trade-offs, condition dependence and stopover site selection by migrating sandpipers

    Get PDF
    Western sandpipers Calidris mauri on southward migration fly over the Gulf of Alaska to the Strait of Georgia, British Columbia, where they stop for a few days to replenish reserves before continuing. In the Strait, individuals captured on the extensive tidal mudflats of the Fraser estuary (∼25000 ha) are significantly heavier (2.71 g, or >10% of lean body mass) than those captured on the small (<100 ha) mudflat of nearby Sidney Island. Previous work has shown that the difference cannot be attributed to seasonal timing, size, age or gender effects, and here we compare predictions made by six hypotheses about a diverse set of data to explain why, partway through a migratory journey of ∼10000 km, birds have such different body masses at two stopover sites within 40 km of each other. The ‘trade-off’ hypothesis – that the large Fraser estuary offers safety from predators, but a lower fattening rate, while the small Sidney Island site is more dangerous, but offers a higher fattening rate – made six successful predictions, all of which were upheld by the data. All other hypotheses failed at least one prediction. We infer that calidrid sandpipers arriving in the Strait of Georgia with little fat remaining (and therefore low body mass) choose to take advantage of the high feeding rate at small sites like Sidney Island because they are less vulnerable to avian predators than are individuals with higher fat reserves, who instead elect to feed at large open sites like the Fraser estuary mudflats

    A meta-analysis of travel time reliability

    Get PDF
    The reliability and scheduling delay of travel time attributes have been considered as important factors in traveler’s decision making. Numerous studies have attempted to incorporate travel time reliability and scheduling delay early/late attributes into traveler’s choice models since the last decade. However, there is still a wide-ranging debate on empirical valuations, and substantial differences of estimation values are shown among studies. Our aim in this study is to investigate several unresolved issues in the empirical valuation of reliability and scheduling delay delay/late and estimate these effects by means of a multivariate statistical technique: meat-analysis. The main finding is that including all reliability and scheduling delay early/late attributes in choice model would lead to lower estimated values for these attributes. We also find that the stated preference data produce substantial lower values for the ratio between scheduling delay early/late and travel time coefficients and the possible explanation may be the misperception error together with the risk aversion attitude of travelers. Key words: travel time reliability, scheduling delay early, scheduling delay late, meta-analysis.

    Controls on ERS altimeter measurements over ice sheets: Footprint-scale topography, backscatter fluctuations, and the dependence of microwave penetration depth on satellite orientation

    Get PDF
    We consider the reliability of radar altimeter measurements of ice sheet elevation and snowpack properties in the presence of surface undulations. We demonstrate that over ice sheets the common practice of averaging echoes by aligning the first return from the surface at the origin can result in a redistribution of power to later times in the average echo, mimicking the effects of microwave penetration into the snowpack. Algorithms that assume the topography affects the radar echo shape in the same way that waves affect altimeter echoes over the ocean will therefore lead to biased estimates of elevation. This assumption will also cause errors in the retrieval of echo-shape parameters intended to quantify the penetration of the microwave pulse into the snowpack. Using numerical simulations, we estimate the errors in retrievals of extinction coefficient, surface backscatter, and volume backscatter for various undulating topographies. In the flatter portions of the Antarctic plateau, useful estimates of these parameters may be recovered by averaging altimeter echoes recorded by the European Remote Sensing satellite (ERS-1). By numerical deconvolution of the average echoes we resolve the depths in the snowpack at which temporal changes and satellite travel-direction effects occur, both of which have the potential to corrupt measurements of ice sheet elevation change. The temporal changes are isolated in the surface-backscatter cross section, while directional effects are confined to the extinction coefficient and are stable from year to year. This allows the removal of the directional effect from measurement of ice-sheet elevation change

    The Predictive Power of Zero Intelligence in Financial Markets

    Full text link
    Standard models in economics stress the role of intelligent agents who maximize utility. However, there may be situations where, for some purposes, constraints imposed by market institutions dominate intelligent agent behavior. We use data from the London Stock Exchange to test a simple model in which zero intelligence agents place orders to trade at random. The model treats the statistical mechanics of order placement, price formation, and the accumulation of revealed supply and demand within the context of the continuous double auction, and yields simple laws relating order arrival rates to statistical properties of the market. We test the validity of these laws in explaining the cross-sectional variation for eleven stocks. The model explains 96% of the variance of the bid-ask spread, and 76% of the variance of the price diffusion rate, with only one free parameter. We also study the market impact function, describing the response of quoted prices to the arrival of new orders. The non-dimensional coordinates dictated by the model approximately collapse data from different stocks onto a single curve. This work is important from a practical point of view because it demonstrates the existence of simple laws relating prices to order flows, and in a broader context, because it suggests that there are circumstances where institutions are more important than strategic considerations

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201
    corecore