17,786 research outputs found

    Optoelectronic Reservoir Computing

    Get PDF
    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.Comment: Contains main paper and two Supplementary Material

    Discrete-Time Chaotic-Map Truly Random Number Generators: Design, Implementation, and Variability Analysis of the Zigzag Map

    Full text link
    In this paper, we introduce a novel discrete chaotic map named zigzag map that demonstrates excellent chaotic behaviors and can be utilized in Truly Random Number Generators (TRNGs). We comprehensively investigate the map and explore its critical chaotic characteristics and parameters. We further present two circuit implementations for the zigzag map based on the switched current technique as well as the current-mode affine interpolation of the breakpoints. In practice, implementation variations can deteriorate the quality of the output sequence as a result of variation of the chaotic map parameters. In order to quantify the impact of variations on the map performance, we model the variations using a combination of theoretical analysis and Monte-Carlo simulations on the circuits. We demonstrate that even in the presence of the map variations, a TRNG based on the zigzag map passes all of the NIST 800-22 statistical randomness tests using simple post processing of the output data.Comment: To appear in Analog Integrated Circuits and Signal Processing (ALOG

    Analog readout for optical reservoir computers

    Full text link
    Reservoir computing is a new, powerful and flexible machine learning technique that is easily implemented in hardware. Recently, by using a time-multiplexed architecture, hardware reservoir computers have reached performance comparable to digital implementations. Operating speeds allowing for real time information operation have been reached using optoelectronic systems. At present the main performance bottleneck is the readout layer which uses slow, digital postprocessing. We have designed an analog readout suitable for time-multiplexed optoelectronic reservoir computers, capable of working in real time. The readout has been built and tested experimentally on a standard benchmark task. Its performance is better than non-reservoir methods, with ample room for further improvement. The present work thereby overcomes one of the major limitations for the future development of hardware reservoir computers.Comment: to appear in NIPS 201

    Hybrid computer Monte-Carlo techniques

    Get PDF
    Hybrid analog-digital computer systems for Monte Carlo method application

    Recommendations and illustrations for the evaluation of photonic random number generators

    Full text link
    The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h(ϵ,τ)h(\epsilon,\tau) as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission

    Longitudinal-control design approach for high-angle-of-attack aircraft

    Get PDF
    This paper describes a control synthesis methodology that emphasizes a variable-gain output feedback technique that is applied to the longitudinal channel of a high-angle-of-attack aircraft. The aircraft is a modified F/A-18 aircraft with thrust-vectored controls. The flight regime covers a range up to a Mach number of 0.7; an altitude range from 15,000 to 35,000 ft; and an angle-of-attack (alpha) range up to 70 deg, which is deep into the poststall region. A brief overview is given of the variable-gain mathematical formulation as well as a description of the discrete control structure used for the feedback controller. This paper also presents an approximate design procedure with relationships for the optimal weights for the selected feedback control structure. These weights are selected to meet control design guidelines for high-alpha flight controls. Those guidelines that apply to the longitudinal-control design are also summarized. A unique approach is presented for the feed-forward command generator to obtain smooth transitions between load factor and alpha commands. Finally, representative linear analysis results and nonlinear batch simulation results are provided
    corecore