115,963 research outputs found

    Highly-Accurate Electricity Load Estimation via Knowledge Aggregation

    Full text link
    Mid-term and long-term electric energy demand prediction is essential for the planning and operations of the smart grid system. Mainly in countries where the power system operates in a deregulated environment. Traditional forecasting models fail to incorporate external knowledge while modern data-driven ignore the interpretation of the model, and the load series can be influenced by many complex factors making it difficult to cope with the highly unstable and nonlinear power load series. To address the forecasting problem, we propose a more accurate district level load prediction model Based on domain knowledge and the idea of decomposition and ensemble. Its main idea is three-fold: a) According to the non-stationary characteristics of load time series with obvious cyclicality and periodicity, decompose into series with actual economic meaning and then carry out load analysis and forecast. 2) Kernel Principal Component Analysis(KPCA) is applied to extract the principal components of the weather and calendar rule feature sets to realize data dimensionality reduction. 3) Give full play to the advantages of various models based on the domain knowledge and propose a hybrid model(XASXG) based on Autoregressive Integrated Moving Average model(ARIMA), support vector regression(SVR) and Extreme gradient boosting model(XGBoost). With such designs, it accurately forecasts the electricity demand in spite of their highly unstable characteristic. We compared our method with nine benchmark methods, including classical statistical models as well as state-of-the-art models based on machine learning, on the real time series of monthly electricity demand in four Chinese cities. The empirical study shows that the proposed hybrid model is superior to all competitors in terms of accuracy and prediction bias

    Training Echo State Networks with Regularization through Dimensionality Reduction

    Get PDF
    In this paper we introduce a new framework to train an Echo State Network to predict real valued time-series. The method consists in projecting the output of the internal layer of the network on a space with lower dimensionality, before training the output layer to learn the target task. Notably, we enforce a regularization constraint that leads to better generalization capabilities. We evaluate the performances of our approach on several benchmark tests, using different techniques to train the readout of the network, achieving superior predictive performance when using the proposed framework. Finally, we provide an insight on the effectiveness of the implemented mechanics through a visualization of the trajectory in the phase space and relying on the methodologies of nonlinear time-series analysis. By applying our method on well known chaotic systems, we provide evidence that the lower dimensional embedding retains the dynamical properties of the underlying system better than the full-dimensional internal states of the network

    Local generalised method of moments: an application to point process-based rainfall models

    Get PDF
    Long series of simulated rainfall are required at point locations for a range of applications, including hydrological studies. Clustered point process-based rainfall models have been used for generating such simulations for many decades. These models suffer from a major limitation, however, their stationarity. Although seasonality can be allowed by fitting separate models for each calendar month or season, the models are unsuitable in their basic form for climate impact studies. In this paper, we develop new methodology to address this limitation. We extend the current fitting approach by allowing the discrete covariate, calendar month, to be replaced or supplemented with continuous covariates that are more directly related to the incidence and nature of rainfall. The covariate-dependent model parameters are estimated for each time interval using a kernel-based nonparametric approach within a generalised method-of-moments framework. An empirical study demonstrates the new methodology using a time series of 5-min rainfall data. The study considers both local mean and local linear approaches. While asymptotic results are included, the focus is on developing useable methodology for a complex model that can only be solved numerically. Issues including the choice of weighting matrix, estimation of parameter uncertainty and bandwidth and model selection are considered from this perspective

    On the Properties of Simulation-based Estimators in High Dimensions

    Full text link
    Considering the increasing size of available data, the need for statistical methods that control the finite sample bias is growing. This is mainly due to the frequent settings where the number of variables is large and allowed to increase with the sample size bringing standard inferential procedures to incur significant loss in terms of performance. Moreover, the complexity of statistical models is also increasing thereby entailing important computational challenges in constructing new estimators or in implementing classical ones. A trade-off between numerical complexity and statistical properties is often accepted. However, numerically efficient estimators that are altogether unbiased, consistent and asymptotically normal in high dimensional problems would generally be ideal. In this paper, we set a general framework from which such estimators can easily be derived for wide classes of models. This framework is based on the concepts that underlie simulation-based estimation methods such as indirect inference. The approach allows various extensions compared to previous results as it is adapted to possibly inconsistent estimators and is applicable to discrete models and/or models with a large number of parameters. We consider an algorithm, namely the Iterative Bootstrap (IB), to efficiently compute simulation-based estimators by showing its convergence properties. Within this framework we also prove the properties of simulation-based estimators, more specifically the unbiasedness, consistency and asymptotic normality when the number of parameters is allowed to increase with the sample size. Therefore, an important implication of the proposed approach is that it allows to obtain unbiased estimators in finite samples. Finally, we study this approach when applied to three common models, namely logistic regression, negative binomial regression and lasso regression

    A Maximum Entropy Procedure to Solve Likelihood Equations

    Get PDF
    In this article, we provide initial findings regarding the problem of solving likelihood equations by means of a maximum entropy (ME) approach. Unlike standard procedures that require equating the score function of the maximum likelihood problem at zero, we propose an alternative strategy where the score is instead used as an external informative constraint to the maximization of the convex Shannon\u2019s entropy function. The problem involves the reparameterization of the score parameters as expected values of discrete probability distributions where probabilities need to be estimated. This leads to a simpler situation where parameters are searched in smaller (hyper) simplex space. We assessed our proposal by means of empirical case studies and a simulation study, the latter involving the most critical case of logistic regression under data separation. The results suggested that the maximum entropy reformulation of the score problem solves the likelihood equation problem. Similarly, when maximum likelihood estimation is difficult, as is the case of logistic regression under separation, the maximum entropy proposal achieved results (numerically) comparable to those obtained by the Firth\u2019s bias-corrected approach. Overall, these first findings reveal that a maximum entropy solution can be considered as an alternative technique to solve the likelihood equation

    Enhancing Operation of a Sewage Pumping Station for Inter Catchment Wastewater Transfer by Using Deep Learning and Hydraulic Model

    Get PDF
    This paper presents a novel Inter Catchment Wastewater Transfer (ICWT) method for mitigating sewer overflow. The ICWT aims at balancing the spatial mismatch of sewer flow and treatment capacity of Wastewater Treatment Plant (WWTP), through collaborative operation of sewer system facilities. Using a hydraulic model, the effectiveness of ICWT is investigated in a sewer system in Drammen, Norway. Concerning the whole system performance, we found that the S{\o}ren Lemmich pump station plays a vital role in the ICWT framework. To enhance the operation of this pump station, it is imperative to construct a multi-step ahead water level prediction model. Hence, one of the most promising artificial intelligence techniques, Long Short Term Memory (LSTM), is employed to undertake this task. Experiments demonstrated that LSTM is superior to Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN), Feed-forward Neural Network (FFNN) and Support Vector Regression (SVR)
    corecore