162 research outputs found

    Multiobjective Algorithms with Resampling for Portfolio Optimization

    Get PDF
    Constrained financial portfolio optimization is a challenging domain where the use of multiobjective evolutionary algorithms has been thriving over the last few years. One of the major issues related to this problem is the dependence of the results on a set of parameters. Given the nature of financial prediction, these figures are often inaccurate, which results in unreliable estimates for the efficient frontier. In this paper we introduce a resampling mechanism that deals with uncertainty in the parameters and results in efficient frontiers that are more robust. We test this idea on real data using four multiobjective optimization algorithms (NSGA-II, GDE3, SMPSO and SPEA2). The results show that resampling significantly increases the reliability of the resulting portfolios

    Time-stamped resampling for robust evolutionary portfolio optimization

    Get PDF
    Traditional mean–variance financial portfolio optimization is based on two sets of parameters, estimates for the asset returns and the variance–covariance matrix. The allocations resulting from both traditional methods and heuristics are very dependent on these values. Given the unreliability of these forecasts, the expected risk and return for the portfolios in the efficient frontier often differ from the expected ones. In this work we present a resampling method based on time-stamping to control the problem. The approach, which is compatible with different evolutionary multiobjective algorithms, is tested with four different alternatives. We also introduce new metrics to assess the reliability of forecast efficient frontiers.The authors acknowledge financial support granted by the Spanish Ministry of Science under contract TIN2008-06491-C04- 03 (MSTAR), TIN2011-28336 (MOVES) and Comunidad de Madrid (CCG10-UC3M/TIC-5029).Publicad

    Mean univariate- GARCH VaR portfolio optimization: actual portfolio approach

    Get PDF
    In accordance with Basel Capital Accords, the Capital Requirements (CR) for market risk exposure of banks is a nonlinear function of Value-at-Risk (VaR). Importantly, the CR is calculated based on a bank’s actual portfolio, i.e. the portfolio represented by its current holdings. To tackle mean-VaR portfolio optimization within the actual portfolio framework (APF), we propose a novel mean-VaR optimization method where VaR is estimated using a univariate Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) volatility model. The optimization was performed by employing a Nondominated Sorting Genetic Algorithm (NSGA-II). On a sample of 40 large US stocks, our procedure provided superior mean-VaR trade-offs compared to those obtained from applying more customary mean-multivariate GARCH and historical VaR models. The results hold true in both low and high volatility samples

    Extended mean-variance model for reliable evolutionary portfolio optimization

    Get PDF
    Real world optimization of financial portfolios pose a challenging multiobjective problem that can be tackled using Evolutionary Algorithms. The fact that the optimization process is subject to the presence of uncertainty concerning asset returns is likely to lead to unreliable solutions. This work suggests extending the classic mean-variance optimization problem with a third explicit robustness objective. This results on sets of portfolios that can be subsequently grouped together according to their reliability. This additional information allows for a better informed decision making regarding asset allocation. © 2014 - IOS Press and the authors. All rights reserved.Financial support granted by the Spanish Ministry of Science under contract TIN2011-28336 (MOVES)

    Modelling and Optimizing Supply Chain Integrated Production Scheduling Problems

    Full text link
    Globalization and advanced information technologies (e.g., Internet of Things) have considerably impacted supply chains (SCs) by persistently forcing original equipment manufacturers (OEMs) to switch production strategies from make-to-stock (MTS) to make-to-order (MTO) to survive in competition. Generally, an OEM follows the MTS strategy for products with steady demand. In contrast, the MTO strategy exists under a pull system with irregular demand in which the received customer orders are scheduled and launched into production. In comparison to MTS, MTO has the primary challenges of ensuring timely delivery at the lowest possible cost, satisfying the demands of high customization and guaranteeing the accessibility of raw materials throughout the production process. These challenges are increasing substantially since industrial productions are becoming more flexible, diversified, and customized. Besides, independently making the production scheduling decisions from other stages of these SCs often find sub-optimal results, creating substantial challenges to fulfilling demands timely and cost-effectively. Since adequately managing these challenges asynchronously are difficult, constructing optimization models by integrating SC decisions, such as customer requirements, supply portfolio (supplier selection and order allocation), delivery batching decisions, and inventory portfolio (inventory replenishment, consumption, and availability), with shop floor scheduling under a deterministic and dynamic environment is essential to fulfilling customer expectations at the least possible cost. These optimization models are computationally intractable. Consequently, designing algorithms to schedule or reschedule promptly is also highly challenging for these time-sensitive, operationally integrated optimization models. Thus, this thesis focuses on modelling and optimizing SC-integrated production scheduling problems, named SC scheduling problems (SCSPs). The objective of optimizing job shop scheduling problems (JSSPs) is to ensure that the requisite resources are accessible when required and that their utilization is maximally efficient. Although numerous algorithms have been devised, they can sometimes become computationally exorbitant and yield sub-optimal outcomes, rendering production systems inefficient. These could be due to a variety of causes, such as an imbalance in population quality over generations, recurrent generation and evaluation of identical schedules, and permitting an under-performing method to conduct the evolutionary process. Consequently, this study designs two methods, a sequential approach (Chapter 2) and a multi-method approach (Chapter 3), to address the aforementioned issues and to acquire competitive results in finding optimal or near-optimal solutions for JSSPs in a single objective setting. The devised algorithms for JSSPs optimize workflows for each job by accurate mapping between/among related resources, generating more optimal results than existing algorithms. Production scheduling can not be accomplished precisely without considering supply and delivery decisions and customer requirements simultaneously. Thus, a few recent studies have operationally integrated SCs to accurately predict process insights for executing, monitoring, and controlling the planned production. However, these studies are limited to simple shop-floor configurations and can provide the least flexibility to address the MTO-based SC challenges. Thus, this study formulates a bi-objective optimization model that integrates the supply portfolio into a flexible job shop scheduling environment with a customer-imposed delivery window to cost-effectively meet customized and on-time delivery requirements (Chapter 4). Compared to the job shop that is limited to sequence flexibility only, the flexible job shop has been deemed advantageous due to its capacity to provide increased scheduling flexibility (both process and sequence flexibility). To optimize the model, the performance of the multi-objective particle swarm optimization algorithm has been enhanced, with the results providing decision-makers with an increased degree of flexibility, offering a larger number of Pareto solutions, more varied and consistent frontiers, and a reasonable time for MTO-based SCs. Environmental sustainability is spotlighted for increasing environmental awareness and follow-up regulations. Consequently, the related factors strongly regulate the supply portfolio for sustainable development, which remained unexplored in the SCSP as those criteria are primarily qualitative (e.g., green production, green product design, corporate social responsibility, and waste disposal system). These absences may lead to an unacceptable supply portfolio. Thus, this study overcomes the problem by integrating VIKORSORT into the proposed solution methodology of the extended SCSP. In addition, forming delivery batches of heterogeneous customer orders is challenging, as one order can lead to another being delayed. Therefore, the previous optimization model is extended by integrating supply, manufacturing, and delivery batching decisions and concurrently optimizing them in response to heterogeneous customer requirements with time window constraints, considering both economic and environmental sustainability for the supply portfolio (Chapter 5). Since the proposed optimization model is an extension of the flexible job shop, it can be classified as a non-deterministic polynomial-time (NP)-hard problem, which cannot be solved by conventional optimization techniques, particularly in the case of larger instances. Therefore, a reinforcement learning-based hyper-heuristic (HH) has been designed, where four solution-updating heuristics are intelligently guided to deliver the best possible results compared to existing algorithms. The optimization model furnishes a set of comprehensive schedules that integrate the supply portfolio, production portfolio (work-center/machine assignment and customer orders sequencing), and batching decisions. This provides numerous meaningful managerial insights and operational flexibility prior to the execution phase. Recently, SCs have been experiencing unprecedented and massive disruptions caused by an abrupt outbreak, resulting in difficulties for OEMs to recover from disruptive demand-supply equilibrium. Hence, this study proposes a multi-portfolio (supply, production, and inventory portfolios) approach for a proactive-reactive scheme, which concerns the SCSP with complex multi-level products, simultaneously including unpredictably dynamic supply, demand, and shop floor disruptions (Chapter 6). This study considers fabrication and assembly in a multi-level product structure. To effectively address this time-sensitive model based on real-time data, a Q-learning-based multi-operator differential evolution algorithm in a HH has been designed to address disruptive events and generate a timely rescheduling plan. The numerical results and analyses demonstrate the proposed model's capability to effectively address single and multiple disruptions, thus providing significant managerial insights and ensuring SC resilience

    Portfolio Optimization Using SPEA2 with Resampling

    Get PDF
    Proceeding of: Intelligent Data Engineering and Automated Learning – IDEAL 2011: 12th International Conference, Norwich, UK, September 7-9, 2011The subject of financial portfolio optimization under real-world constraints is a difficult problem that can be tackled using multiobjective evolutionary algorithms. One of the most problematic issues is the dependence of the results on the estimates for a set of parameters, that is, the robustness of solutions. These estimates are often inaccurate and this may result on solutions that, in theory, offered an appropriate risk/return balance and, in practice, resulted being very poor. In this paper we suggest that using a resampling mechanism may filter out the most unstable. We test this idea on real data using SPEA2 as optimization algorithm and the results show that the use of resampling increases significantly the reliability of the resulting portfolios.The authors acknowledge financial support granted by the Spanish Ministry of Science under contract TIN2008-06491-C04-03 (MSTAR) and Comunidad de Madrid (CCG10- UC3M/TIC-5029).Publicad

    Evolutionary approaches for portfolio optimization

    Get PDF
    Portfolio optimization involves the optimal assignment of limited capital to different available financial assets to achieve a reasonable trade-off between profit and risk objectives. Markowitz’s mean variance (MV) model is widely regarded as the foundation of modern portfolio theory and provides a quantitative framework for portfolio optimization problems. In real market, investors commonly face real-world trading restrictions and it requires that the constructed portfolios have to meet trading constraints. When additional constraints are added to the basic MV model, the problem thus becomes more complex and the exact optimization approaches run into difficulties to deliver solutions within reasonable time for large problem size. By introducing the cardinality constraint alone already transformed the classic quadratic optimization model into a mixed-integer quadratic programming problem which is an NP-hard problem. Evolutionary algorithms, a class of metaheuristics, are one of the known alternatives for optimization problems that are too complex to be solved using deterministic techniques. This thesis focuses on single-period portfolio optimization problems with practical trading constraints and two different risk measures. Four hybrid evolutionary algorithms are presented to efficiently solve these problems with gradually more complex real world constraints. In the first part of the thesis, the mean variance portfolio model is investigated by taking into account real-world constraints. A hybrid evolutionary algorithm (PBILDE) for portfolio optimization with cardinality and quantity constraints is presented. The proposed PBILDE is able to achieve a strong synergetic effect through hybridization of PBIL and DE. A partially guided mutation and an elitist update strategy are proposed in order to promote the efficient convergence of PBILDE. Its effectiveness is evaluated and compared with other existing algorithms over a number of datasets. A multi-objective scatter search with archive (MOSSwA) algorithm for portfolio optimization with cardinality, quantity and pre-assignment constraints is then presented. New subset generations and solution combination methods are proposed to generate efficient and diverse portfolios. A learning-guided multi-objective evolutionary (MODEwAwL) algorithm for the portfolio optimization problems with cardinality, quantity, pre-assignment and round lot constraints is presented. A learning mechanism is introduced in order to extract important features from the set of elite solutions. Problem-specific selection heuristics are introduced in order to identify high-quality solutions with a reduced computational cost. An efficient and effective candidate generation scheme utilizing a learning mechanism, problem specific heuristics and effective direction-based search methods is proposed to guide the search towards the promising regions of the search space. In the second part of the thesis, an alternative risk measure, VaR, is considered. A non-parametric mean-VaR model with six practical trading constraints is investigated. A multi-objective evolutionary algorithm with guided learning (MODE-GL) is presented for the mean-VaR model. Two different variants of DE mutation schemes in the solution generation scheme are proposed in order to promote the exploration of the search towards the least crowded region of the solution space. Experimental results using historical daily financial market data from S &P 100 and S & P 500 indices are presented. When the cardinality constraints are considered, incorporating a learning mechanism significantly promotes the efficient convergence of the search

    Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA

    Full text link
    [EN] Despite the widespread use of the classical bicriteria Markowitz mean-variance framework, a broad consensus is emerging on the need to include more criteria for complex portfolio selection problems. Sustainable investing, also called socially responsible investment, is becoming a mainstream investment practice. In recent years, some scholars have attempted to include sustainability as a third criterion to better reflect the individual preferences of those ethical or green investors who are willing to combine strong financial performance with social benefits. For this purpose, new computational methods for optimizing this complex multiobjective problem are needed. Multiobjective evolutionary algorithms (MOEAs) have been recently used for portfolio selection, thus extending the mean-variance methodology to obtain a mean-variance-sustainability nondominated surface. In this paper, we apply a recent multiobjective genetic algorithm based on the concept of epsilon-dominance called ev-MOGA. This algorithm tries to ensure convergence towards the Pareto set in a smart distributed manner with limited memory resources. It also adjusts the limits of the Pareto front dynamically and prevents solutions belonging to the ends of the front from being lost. Moreover, the individual preferences of socially responsible investors could be visualised using a novel tool, known as level diagrams, which helps investors better understand the range of values attainable and the tradeoff between return, risk, and sustainability.This work was funded by "Ministerio de Economia y Competitividad" (Spain), research project RTI2018-096904B-I00, and "Conselleria de Educacion, Cultura y DeporteGeneralitat Valenciana" (Spain), research project AICO/2019/055Garcia-Bernabeu, A.; Salcedo-Romero-De-Ávila, J.; Hilario Caballero, A.; Pla SantamarĂ­a, D.; Herrero DurĂĄ, JM. (2019). Computing the Mean-Variance-Sustainability Nondominated Surface by ev-MOGA. Complexity. 2019:1-12. https://doi.org/10.1155/2019/6095712S1122019Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77. doi:10.2307/2975974Hirschberger, M., Steuer, R. E., Utz, S., Wimmer, M., & Qi, Y. (2013). Computing the Nondominated Surface in Tri-Criterion Portfolio Selection. Operations Research, 61(1), 169-183. doi:10.1287/opre.1120.1140Utz, S., Wimmer, M., Hirschberger, M., & Steuer, R. E. (2014). Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds. European Journal of Operational Research, 234(2), 491-498. doi:10.1016/j.ejor.2013.07.024Utz, S., Wimmer, M., & Steuer, R. E. (2015). Tri-criterion modeling for constructing more-sustainable mutual funds. European Journal of Operational Research, 246(1), 331-338. doi:10.1016/j.ejor.2015.04.035Qi, Y., Steuer, R. E., & Wimmer, M. (2015). An analytical derivation of the efficient surface in portfolio selection with three criteria. Annals of Operations Research, 251(1-2), 161-177. doi:10.1007/s10479-015-1900-yGasser, S. M., Rammerstorfer, M., & Weinmayer, K. (2017). Markowitz revisited: Social portfolio engineering. European Journal of Operational Research, 258(3), 1181-1190. doi:10.1016/j.ejor.2016.10.043Qi, Y. (2018). On outperforming social-screening-indexing by multiple-objective portfolio selection. Annals of Operations Research, 267(1-2), 493-513. doi:10.1007/s10479-018-2921-0Nathaphan, S., & Chunhachinda, P. (2010). Estimation Risk Modeling in Optimal Portfolio Selection: An Empirical Study from Emerging Markets. Economics Research International, 2010, 1-10. doi:10.1155/2010/340181DeMiguel, V., Garlappi, L., & Uppal, R. (2007). Optimal Versus Naive Diversification: How Inefficient is the 1/NPortfolio Strategy? Review of Financial Studies, 22(5), 1915-1953. doi:10.1093/rfs/hhm075Metaxiotis, K., & Liagkouras, K. (2012). Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review. Expert Systems with Applications, 39(14), 11685-11698. doi:10.1016/j.eswa.2012.04.053Bertsimas, D., & Shioda, R. (2007). Algorithm for cardinality-constrained quadratic optimization. Computational Optimization and Applications, 43(1), 1-22. doi:10.1007/s10589-007-9126-9Chang, T.-J., Yang, S.-C., & Chang, K.-J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36(7), 10529-10537. doi:10.1016/j.eswa.2009.02.062Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality constrained efficient frontier. European Journal of Operational Research, 213(3), 538-550. doi:10.1016/j.ejor.2011.03.030Chen, B., Lin, Y., Zeng, W., Xu, H., & Zhang, D. (2017). The mean-variance cardinality constrained portfolio optimization problem using a local search-based multi-objective evolutionary algorithm. Applied Intelligence, 47(2), 505-525. doi:10.1007/s10489-017-0898-zLiagkouras, K. (2019). A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio optimization problem. Knowledge-Based Systems, 163, 186-203. doi:10.1016/j.knosys.2018.08.025Kaucic, M., Moradi, M., & Mirzazadeh, M. (2019). Portfolio optimization by improved NSGA-II and SPEA 2 based on different risk measures. Financial Innovation, 5(1). doi:10.1186/s40854-019-0140-6Silva, Y. L. T. V., Herthel, A. B., & Subramanian, A. (2019). A multi-objective evolutionary algorithm for a class of mean-variance portfolio selection problems. Expert Systems with Applications, 133, 225-241. doi:10.1016/j.eswa.2019.05.018Anagnostopoulos, K. P., & Mamanis, G. (2009). Multiobjective evolutionary algorithms for complex portfolio optimization problems. Computational Management Science, 8(3), 259-279. doi:10.1007/s10287-009-0113-8Ehrgott, M., Klamroth, K., & Schwehm, C. (2004). An MCDM approach to portfolio optimization. European Journal of Operational Research, 155(3), 752-770. doi:10.1016/s0377-2217(02)00881-0Steuer, R. E., Qi, Y., & Hirschberger, M. (2006). Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 152(1), 297-317. doi:10.1007/s10479-006-0137-1Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37(7), 1285-1297. doi:10.1016/j.cor.2009.09.009Hallerbach, W. (2004). A framework for managing a portfolio of socially responsible investments. European Journal of Operational Research, 153(2), 517-529. doi:10.1016/s0377-2217(03)00172-3Ballestero, E., Bravo, M., PĂ©rez-Gladish, B., Arenas-Parra, M., & PlĂ -Santamaria, D. (2012). Socially Responsible Investment: A multicriteria approach to portfolio selection combining ethical and financial objectives. European Journal of Operational Research, 216(2), 487-494. doi:10.1016/j.ejor.2011.07.011Cabello, J. M., Ruiz, F., PĂ©rez-Gladish, B., & MĂ©ndez-RodrĂ­guez, P. (2014). Synthetic indicators of mutual funds’ environmental responsibility: An application of the Reference Point Method. European Journal of Operational Research, 236(1), 313-325. doi:10.1016/j.ejor.2013.11.031Calvo, C., Ivorra, C., & Liern, V. (2014). Fuzzy portfolio selection with non-financial goals: exploring the efficient frontier. Annals of Operations Research, 245(1-2), 31-46. doi:10.1007/s10479-014-1561-2Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108Blasco, X., Herrero, J. M., Sanchis, J., & MartĂ­nez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.01

    Matheuristic algorithms for solving multi-objective/stochastic scheduling and routing problems

    Get PDF
    In der Praxis beinhalten Optimierungsprobleme oft unterschiedliche Ziele, welche optimiert werden sollen. Oft ist es nicht möglich die Ziele zu einem einzelnen Ziel zusammenzufassen. Mehrzieloptimierung beschĂ€ftigt sich damit, solche Probleme zu lösen. Wie in der Einzieloptimierung muss eine Lösung alle Nebenbedingungen des Problems erfĂŒllen. Im Allgemeinen sind die Ziele konfligierend, sodass es nicht möglich ist eine einzelne Lösung zu finden welche optimal im Sinne aller Ziele ist. Algorithmen zum Lösen von Mehrziel-Optimierungsproblemen, prĂ€sentieren dem Entscheider eine Menge von effizienten Alternativen. Effizienz in der Mehrzieloptimierung ist als Pareto-OptimalitĂ€t ausgedrĂŒckt. Eine Lösung eines Optimierungsproblems ist genau dann Pareto-optimal wenn es keine andere zulĂ€ssige Lösung gibt, welche in allen Zielen mindestens gleich gut wie die betrachtete Lösung ist und besser in mindestens einem Ziel. In dieser Arbeit werden Mehrziel-Optimierungsprobleme aus zwei unterschiedlichen Anwendungsgebieten betrachtet. Das erste Problem, das Multi-objective Project Selection, Scheduling and Staffing with Learning Problem (MPSSSL), entstammt dem Management in forschungsorientierten Organisationen. Die Entscheider in solchen Organisationen stehen vor der Frage welche Projekte sie aus einer Menge von ProjektantrĂ€gen auswĂ€hlen sollen, und wie diese Teilmenge von Projekten (ein Projektportfolio) mit den benötigten Ressourcen ausgestattet werden kann (dies beinhaltet die zeitliche und personelle Planung). Aus unterschiedlichen GrĂŒnden ist dieses Problem schwer zu lösen, z.B. (i) die Auswahl von Projekten unter Beachtung der beschrĂ€nkten Ressourcen ist ein Rucksackproblem (und ist damit NP-schwer) (ii) ob ein Projektportfolio zulĂ€ssig ist oder nicht hĂ€ngt davon ab ob, man dafĂŒr einen Zeitplan erstellen kann und genĂŒgend Mitarbeiter zur VerfĂŒgung stehen. Da in diesem Problem die Mitarbeiterzuordnung zu den einzelnen Projekten einbezogen wird, muss der Entscheider Ziele unterschiedlicher Art berĂŒcksichtigen. Manche Ziele sind ökonomischer Natur, z.B. die Rendite, andere wiederum beziehen sich auf die Kompetenzentwicklung der einzelnen Mitarbeiter. Ziele, die sich auf die Kompetenzentwicklung beziehen, sollen sicherstellen, dass das Unternehmen auch in Zukunft am Markt bestehen kann. Im Allgemeinen können diese unterschiedlichen Ziele nicht zu einem einzigen Ziel zusammengefasst werden. Daher werden Methoden zur Lösung von Mehrziel-Optimierungsproblemen benötigt. Um MPSSSL Probleme zu lösen werden in dieser Arbeit zwei unterschiedliche hybride Algorithmen betrachtet. Beide kombinieren nĂ€mlich Metaheuristiken (i) den Nondominated Sorting Genetic (NSGA-II) Algorithmus, und den (ii)~Pareto Ant Colony (P-ACO) Algorithmus, mit einem exakten Algorithmus zum Lösen von Linearen Programmen kombinieren. Unsicherheit ist ein weiterer wichtiger Aspekt der in der Praxis auftaucht. Unterschiedliche Parameter des Problems können unsicher sein (z.B. der aus einem Projekt erzielte Gewinn oder die Zeit bzw. der Aufwand, der benötigt wird, um die einzelnen VorgĂ€nge eines Projekts abzuschließen). Um in diesem Fall das ``beste'' Projektportfolio zu finden, werden Methoden benötigt, welche stochastische Mehrziel-Optimierungsprobleme lösen können. Zur Lösung der stochastischen Erweiterung (SMPSSSL) des MPSSSL Problems zu lösen, prĂ€sentieren wir eine Methode, die den zuvor genannten hybriden NSGA-II Algorithmus mit dem Adaptive Pareto Sampling (APS) Algorithmus kombiniert. APS wird verwendet, um das Zusammenspiel von Simulation und Optimierung zu koordinieren. Zur Steigerung der Performance des Simulationsprozesses, verwenden wir Importance Sampling (IS). Das zweite Problem dieser Arbeit, das Bi-Objective Capacitated Vehicle Routing Problem with Route Balancing (CVRPB), kommt aus dem Bereich Logistik. Wenn man eine Menge von Kunden zu beliefern hat, steht man als Entscheider vor der Frage, wie man die Routen fĂŒr eine fixe Anzahl von Fahrzeugen (mit beschrĂ€nkter KapazitĂ€t) bestimmt, sodass alle Kunden beliefert werden können. Die Routen aller Fahrzeuge starten und enden dabei immer bei einem Depot. Die Einziel-Variante dieses Problems ist als Capacitated Vehicle Routing Problem (CVRP) bekannt, dessen Ziel es ist die Lösung zu finden, die die Gesamtkosten aller Routen minimiert. Dabei tritt jedoch das Problem auf, dass die Routen der optimalen Lösung sehr unterschiedliche Fahrtzeiten haben können. Unter bestimmten UmstĂ€nden ist dies jedoch nicht erwĂŒnscht. Um dieses Problem zu umgehen, betrachten wir in dieser Arbeit eine Variante des (bezeichnet als CVRPB) CVRP, welche als zweite Zielfunktion die Balanziertheit der einzelnen Routen einbezieht. Zur Lösung von CVRPB Problemen verwenden wir die Adaptive Epsilon-Constraint Method in Kombination mit einem Branch-and-Cut Algorithmus und zwei unterschiedlichen Genetischen Algorithmen (GA), (i) einem Einziel-GA und (ii) dem NSGA-II. In dieser Arbeit werden Optimierungsalgorithmen prĂ€sentiert, welche es erlauben, Mehrziel- und stochastische Mehrziel-Optimierungsprobleme zu lösen. Unterschiedliche Algorithmen wurden implementiert und basierend auf aktuellen Performance-Maßen verglichen. Experimente haben gezeigt, dass die entwickelten Methoden gut geeignet sind, die betrachteten Optimierungsprobleme zu lösen. Die hybriden Algorithmen, welche Metaheuristiken mit exakten Methoden kombinieren, waren entweder ausschlaggebend um das Problem zu lösen (im Fall des Project Portfolio Selection Problems) oder konnten die Performance des Lösungsprozesses signifikant verbessern (im Fall des Vehicle Routing Problems).In practice decision problems often include different goals which can hardly be aggregated to a single objective for different reasons. In the field of multi-objective optimization several objective functions are considered. As in single objective optimization a solution has to satisfy all constraints of the problem. In general the goals are conflicting and there will be no solution, that is optimal for all objectives. Algorithms for multi-objective optimization problems provide the decision maker a set of efficient solutions, among which she or he can choose the most suitable alternative. In multi-objective optimization efficiency of a solution is expressed as Pareto-optimality. Pareto-optimality of a solution is defined as the property that no other solution exists that is better than the proposed one in at least one objective and at least equally good in all criteria. The first application that is considered in this thesis, the Multi-objective Project Selection, Scheduling and Staffing with Learning problem (MPSSSL) arises from the field of management in research-centered organizations. Given a set of project proposals the decision makers have to select the ``best'' subset of projects (a project portfolio) and set these up properly (schedule them and provide the necessary resources). This problem is hard to solve for different reasons: (i) selecting a subset of projects considering limited resources is a knapsack-type problem that is known to be NP-hard, and (ii) to determine the feasibility of a given portfolio, the projects have to be scheduled and staff must be assigned to them. As in this problem the assignment of workers is influenced by the decision which portfolio should be selected, the decision maker has to consider goals of different nature. Some objectives are related to economic goals (e.g. return of investment), others are related to the competence development of the workers. Competence oriented goals are motivated by the fact that competencies determine the attainment and sustainability of strategic positions in market competition. In general the objectives cannot be combined to a single objective, therefore methods for solving multi-objective optimization problems are used. To solve the problem we use two different hybrid algorithms that combine metaheuristic algorithms, (i) the Nondominated Sorting Genetic Algorithm (NSGA-II), and (ii) Pareto Ant Colony (P-ACO) algorithm with a linear programming solver as a subordinate. In practice, uncertainty is another typically encountered aspect. Different parameters of the problem can be uncertain (e.g. benefits of a project, or the time and effort required to perform the single activities required by a project). To determine the ``best'' portfolio, methods are needed that are able to handle uncertainty in optimization. To solve the stochastic extension (SMPSSSL) of the MPSSSL problem we present an algorithm that combines the aforementioned NSGA-II algorithm with the Adaptive Pareto Sampling (APS) algorithm. APS is used to handle the interplay between multi-objective optimization and simulation. The performance of the simulation process is increased by using importance sampling (IS). The second problem, the Bi-objective Capacitated Vehicle Routing Problem with Route Balancing (CVRPB) arises from the field of vehicle routing. Given a set of customers, the decision makers have to construct routes for a fixed number of vehicles, each starting and ending at the same depot, such that the demands of all customers can be fulfilled, and the capacity constraints of each vehicle are not violated. The traditional objective of this problem (known as the Capacitated Vehicle Routing Problem (CVRP)) is minimizing the total costs of all routes. A problem that may arise by this approach is that the resulting routes can be very unbalanced (in the sense of drivers workload). To overcome this problem a second objective function that measures the balance of the routes of a solution is introduced. In this work, we use the Adaptive Epsilon-Constraint Method in combination with a branch-and-cut algorithm and two genetic algorithms (i) a single-objective GA and (ii) the multi-objective NSGA-II, to solve the considered problem. Prototypes of different algorithms to solve the problems are developed and their performance is assessed by using state of the art performance measures. The computational experiments show that the developed solution procedures will be well suited to solve the considered optimization problems. The hybrid algorithms combining metaheuristic and exact optimization methods, turned out to be crucial to solve the problem (application to project portfolio selection) or to improve the performance of the solution procedure (application to vehicle routing)
    • 

    corecore