361 research outputs found

    A Framework for Approximate Optimization of BoT Application Deployment in Hybrid Cloud Environment

    Get PDF
    We adopt a systematic approach to investigate the efficiency of near-optimal deployment of large-scale CPU-intensive Bag-of-Task applications running on cloud resources with the non-proportional cost to performance ratios. Our analytical solutions perform in both known and unknown running time of the given application. It tries to optimize users' utility by choosing the most desirable tradeoff between the make-span and the total incurred expense. We propose a schema to provide a near-optimal deployment of BoT application regarding users' preferences. Our approach is to provide user with a set of Pareto-optimal solutions, and then she may select one of the possible scheduling points based on her internal utility function. Our framework can cope with uncertainty in the tasks' execution time using two methods, too. First, an estimation method based on a Monte Carlo sampling called AA algorithm is presented. It uses the minimum possible number of sampling to predict the average task running time. Second, assuming that we have access to some code analyzer, code profiling or estimation tools, a hybrid method to evaluate the accuracy of each estimation tool in certain interval times for improving resource allocation decision has been presented. We propose approximate deployment strategies that run on hybrid cloud. In essence, proposed strategies first determine either an estimated or an exact optimal schema based on the information provided from users' side and environmental parameters. Then, we exploit dynamic methods to assign tasks to resources to reach an optimal schema as close as possible by using two methods. A fast yet simple method based on First Fit Decreasing algorithm, and a more complex approach based on the approximation solution of the transformed problem into a subset sum problem. Extensive experiment results conducted on a hybrid cloud platform confirm that our framework can deliver a near optimal solution respecting user's utility function

    Protecting a sensitive queue from arrival variability

    Get PDF

    Multiobjective Order Acceptance and Scheduling on Unrelated Parallel Machines with Machine Eligibility Constraints

    Get PDF
    This paper studies the order acceptance and scheduling problem on unrelated parallel machines with machine eligibility constraints. Two objectives are considered to maximize total net profit and minimize the makespan, and the mathematical model of this problem is formulated as multiobjective mixed integer linear programming. Some properties with respect to the objectives are analysed, and then a classic list scheduling (LS) rule named the first available machine rule is extended, and three new LS rules are presented, which focus on the maximization of the net profit, the minimization of the makespan, and the trade-off between the two objectives, respectively. Furthermore, a list-scheduling-based multiobjective parthenogenetic algorithm (LS-MPGA) is presented with parthenogenetic operators and Pareto-ranking and selection method. Computational experiments on randomly generated instances are carried out to assess the effectiveness and efficiency of the four LS rules under the framework of LS-MPGA and discuss their application environments. Results demonstrate that the performance of the LS-MPGA developed for trade-off is superior to the other three algorithms

    MO-Greedy: an extended beam-search approach for solving a multi-criteria scheduling problem on heterogeneous machines

    Get PDF
    International audienceOptimization problems can often be tackled with respect to several objectives. In such cases, there can be several incomparable Pareto-optimal solutions. Computing or approximating such solutions is a major challenge in algorithm design. Here, we show how to use an extended beam-search technique to solve a multi-criteria scheduling problem for heterogeneous machines. This method, called MO-Greedy (for Multi-Objective greedy), allows the design of a multi-objective algorithm when a single-objective greedy one is known. We show that we can generate, in a single execution, a Pareto front optimized with respect to the preferences specified by the decision maker. We compare our approach to other heuristics and an approximation algorithm and show that the obtained front is, on average, better with our method

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    A single-machine scheduling problem with multiple unavailability constraints: A mathematical model and an enhanced variable neighborhood search approach

    Get PDF
    AbstractThis research focuses on a scheduling problem with multiple unavailability periods and distinct due dates. The objective is to minimize the sum of maximum earliness and tardiness of jobs. In order to optimize the problem exactly a mathematical model is proposed. However due to computational difficulties for large instances of the considered problem a modified variable neighborhood search (VNS) is developed. In basic VNS, the searching process to achieve to global optimum or near global optimum solution is totally random, and it is known as one of the weaknesses of this algorithm. To tackle this weakness, a VNS algorithm is combined with a knowledge module. In the proposed VNS, knowledge module extracts the knowledge of good solution and save them in memory and feed it back to the algorithm during the search process. Computational results show that the proposed algorithm is efficient and effective

    Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study

    Full text link
    The permutation flowshop scheduling problem has been thoroughly studied in recent decades, both from single objective as well as from multi-objective perspectives. To the best of our knowledge, little has been done regarding the multi-objective flowshop with Pareto approach when sequence dependent setup times are considered. As setup times and multi-criteria problems are important in industry, we must focus on this area. We propose a simple, yet powerful algorithm for the sequence dependent setup times flowshop problem with several criteria. The presented method is referred to as Restarted Iterated Pareto Greedy or RIPG and is compared against the best performing approaches from the relevant literature. Comprehensive computational and statistical analyses are carried out in order to demonstrate that the proposed RIPG method clearly outperforms all other algorithms and, as a consequence, it is a state-of- art method for this important and practical scheduling problemThe authors thank the anonymous referees for their careful and detailed comments which have helped improve this manuscript considerably. This work is partially financed by the Spanish Ministry of Science and Innovation, under the projects "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theorerical Advances" with reference DPI2008-03511/DPI and "RESULT-Realistic Extended Scheduling Using Light Techniques" with reference DPI2012-36243-C02-01 and by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and by the European Union through the European Regional Development Fund (FEDER) inside the R+D program "Ayudas dirigidas a Institutos Tecnologicos de la Red IMPIVA" during the year 2011, with project numbers IMDEEA/2011/142 and IMDEEA/2012/143.Ciavotta, M.; Minella, GG.; Ruiz GarcĂ­a, R. (2013). Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study. European Journal of Operational Research. 227(2):301-313. https://doi.org/10.1016/j.ejor.2012.12.031S301313227

    Approximation Algorithms for Resource Allocation

    Get PDF
    This thesis is devoted to designing new techniques and algorithms for combinatorial optimization problems arising in various applications of resource allocation. Resource allocation refers to a class of problems where scarce resources must be distributed among competing agents maintaining certain optimization criteria. Examples include scheduling jobs on one/multiple machines maintaining system performance; assigning advertisements to bidders, or items to people maximizing profit/social fairness; allocating servers or channels satisfying networking requirements etc. Altogether they comprise a wide variety of combinatorial optimization problems. However, a majority of these problems are NP-hard in nature and therefore, the goal herein is to develop approximation algorithms that approximate the optimal solution as best as possible in polynomial time. The thesis addresses two main directions. First, we develop several new techniques, predominantly, a new linear programming rounding methodology and a constructive aspect of a well-known probabilistic method, the Lov\'{a}sz Local Lemma (LLL). Second, we employ these techniques to applications of resource allocation obtaining substantial improvements over known results. Our research also spurs new direction of study; we introduce new models for achieving energy efficiency in scheduling and a novel framework for assigning advertisements in cellular networks. Both of these lead to a variety of interesting questions. Our linear programming rounding methodology is a significant generalization of two major rounding approaches in the theory of approximation algorithms, namely the dependent rounding and the iterative relaxation procedure. Our constructive version of LLL leads to first algorithmic results for many combinatorial problems. In addition, it settles a major open question of obtaining a constant factor approximation algorithm for the Santa Claus problem. The Santa Claus problem is a NPNP-hard resource allocation problem that received much attention in the last several years. Through out this thesis, we study a number of applications related to scheduling jobs on unrelated parallel machines, such as provisionally shutting down machines to save energy, selectively dropping outliers to improve system performance, handling machines with hard capacity bounds on the number of jobs they can process etc. Hard capacity constraints arise naturally in many other applications and often render a hitherto simple combinatorial optimization problem difficult. In this thesis, we encounter many such instances of hard capacity constraints, namely in budgeted allocation of advertisements for cellular networks, overlay network design, and in classical problems like vertex cover, set cover and k-median

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning
    • …
    corecore