2,074 research outputs found

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    The matrix revisited: A critical assessment of virtual reality technologies for modeling, simulation, and training

    Get PDF
    A convergence of affordable hardware, current events, and decades of research have advanced virtual reality (VR) from the research lab into the commercial marketplace. Since its inception in the 1960s, and over the next three decades, the technology was portrayed as a rarely used, high-end novelty for special applications. Despite the high cost, applications have expanded into defense, education, manufacturing, and medicine. The promise of VR for entertainment arose in the early 1990\u27s and by 2016 several consumer VR platforms were released. With VR now accessible in the home and the isolationist lifestyle adopted due to the COVID-19 global pandemic, VR is now viewed as a potential tool to enhance remote education. Drawing upon over 17 years of experience across numerous VR applications, this dissertation examines the optimal use of VR technologies in the areas of visualization, simulation, training, education, art, and entertainment. It will be demonstrated that VR is well suited for education and training applications, with modest advantages in simulation. Using this context, the case is made that VR can play a pivotal role in the future of education and training in a globally connected world

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Digitartic: bi-manual gestural control of articulation in performative singing synthesis

    Get PDF
    Digitartic, a system for bi-manual gestural control of Vowel-Consonant-Vowel performative singing synthesis is presented. This system is an extension of a real-time gesture-controlled vowel singing instrument developed in the Max MSP language. In addition to pitch, vowels and voice strength controls, Digitartic is designed for gestural control of articulation parameters, including various places and manners of articulation. The phases of articulation between two phonemes are continuously controlled and can be driven in real time without noticeable delay, at any stage of the synthetic phoneme production. Thus, as in natural singing, very accurate rhythmic patterns are produced and adapted while playing with other musicians. The instrument features two (augmented) pen tablets for controlling voice production: one is dealing with the glottal source and vowels, the second one is dealing with consonant/vowel articulation. The results show very natural consonant and vowel synthesis. Virtual choral practice confirms the effectiveness of Digitartic as an expressive musical instrument

    On the playing of monodic pitch in digital music instrument

    Get PDF
    This paper addresses the issue of controlling monodic pitch in digital musical instruments (DMIs), with a focus on instruments for which the pitch needs to be played with accuracy. Indeed, in many cultures, music is based on discrete sets of ordered notes called scales, so the need to control pitch has a predominant role in acoustical instruments as well as in most of the DMIs. But the freedom of param- eter mapping allowed by computers, as well as the wide range of interfaces, opens a large variety of strategies to control pitch in the DMIs. Without pretending to be exhaustive, our paper aims to draw up a general overview of this subject. It includes: 1) a review of interfaces to produce discrete and/or continuous pitch 2) a review of DMI maker strategies to help the performer for controlling easily and accurately the pitch 3) some developments from the authors concerning interfaces and mapping strategies for continuous pitch control 4) some comparisons with acoustical instruments. At last, a Max/MSP patch —publically available— is provided to support the discussion by allow- ing the reader to test some of the pitch control strategies reviewed in this paper

    Exploring visual representation of sound in computer music software through programming and composition

    Get PDF
    Presented through contextualisation of the portfolio works are developments of a practice in which the acts of programming and composition are intrinsically connected. This practice-based research (conducted 2009–2013) explores visual representation of sound in computer music software. Towards greater understanding of composing with the software medium, initial questions are taken as stimulus to explore the subject through artistic practice and critical thinking. The project begins by asking: How might the ways in which sound is visually represented influence the choices that are made while those representations are being manipulated and organised as music? Which aspects of sound are represented visually, and how are those aspects shown? Recognising sound as a psychophysical phenomenon, the physical and psychological aspects of aesthetic interest to my work are identified. Technological factors of mediating these aspects for the interactive visual-domain of software are considered, and a techno-aesthetic understanding developed. Through compositional studies of different approaches to the problem of looking at sound in software, on screen, a number of conceptual themes emerge in this work: the idea of software as substance, both as a malleable material (such as in live coding), and in terms of outcome artefacts; the direct mapping between audio data and screen pixels; the use of colour that maintains awareness of its discrete (as opposed to continuous) basis; the need for integrated display of parameter controls with their target data; and the tildegraph concept that began as a conceptual model of a gramophone and which is a spatio-visual sound synthesis technique related to wave terrain synthesis. The spiroid-frequency-space representation is introduced, contextualised, and combined both with those themes and a bespoke geometrical drawing system (named thisis), to create a new modular computer music software environment named sdfsys

    Earth orbital experiment program and requirements study, volume 1, sections 1 - 6

    Get PDF
    A reference manual for planners of manned earth-orbital research activity is presented. The manual serves as a systems approach to experiment and mission planning based on an integrated consideration of candidate research programs and the appropriate vehicle, mission, and technology development requirements. Long range goals and objectives for NASA activities during the 1970 to 1980 time period are analyzed. The useful and proper roles of manned and automated spacecraft for implementing NASA experiments are described. An integrated consideration of NASA long range goals and objectives, the system and mission requirements, and the alternative implementation plans are developed. Specific areas of investigation are: (1) manned space flight requirements, (2) space biology, (3) spaceborne astronomy, (4) space communications and navigation, (5) earth observation, (6) supporting technology development requirements, (7) data management system matrices, (8) instrumentation matrices, and (9) biotechnology laboratory experiments

    How touch and hearing influence visual processing in sensory substitution, synaesthesia and cross-modal correspondences

    Get PDF
    Sensory substitution devices (SSDs) systematically turn visual dimensions into patterns of tactile or auditory stimulation. After training, a user of these devices learns to translate these audio or tactile sensations back into a mental visual picture. Most previous SSDs translate greyscale images using intuitive cross-sensory mappings to help users learn the devices. However more recent SSDs have started to incorporate additional colour dimensions such as saturation and hue. Chapter two examines how previous SSDs have translated the complexities of colour into hearing or touch. The chapter explores if colour is useful for SSD users, how SSD and veridical colour perception differ and how optimal cross-sensory mappings might be considered. After long-term training, some blind users of SSDs report visual sensations from tactile or auditory stimulation. A related phenomena is that of synaesthesia, a condition where stimulation of one modality (i.e. touch) produces an automatic, consistent and vivid sensation in another modality (i.e. vision). Tactile-visual synaesthesia is an extremely rare variant that can shed light on how the tactile-visual system is altered when touch can elicit visual sensations. Chapter three reports a series of investigations on the tactile discrimination abilities and phenomenology of tactile-vision synaesthetes, alongside questionnaire data from synaesthetes unavailable for testing. Chapter four introduces a new SSD to test if the presentation of colour information in sensory substitution affects object and colour discrimination. Chapter five presents experiments on intuitive auditory-colour mappings across a wide variety of sounds. These findings are used to predict the reported colour hallucinations resulting from LSD use while listening to these sounds. Chapter six uses a new sensory substitution device designed to test the utility of these intuitive sound-colour links for visual processing. These findings are discussed with reference to how cross-sensory links, LSD and synaesthesia can inform optimal SSD design for visual processing

    Virtual image out-the-window display system study. Volume 2 - Appendix

    Get PDF
    Virtual image out-the-window display system imaging techniques and simulation devices - appendices containing background materia
    • 

    corecore