455 research outputs found

    Circular formation control of fixed-wing UAVs with constant speeds

    Full text link
    In this paper we propose an algorithm for stabilizing circular formations of fixed-wing UAVs with constant speeds. The algorithm is based on the idea of tracking circles with different radii in order to control the inter-vehicle phases with respect to a target circumference. We prove that the desired equilibrium is exponentially stable and thanks to the guidance vector field that guides the vehicles, the algorithm can be extended to other closed trajectories. One of the main advantages of this approach is that the algorithm guarantees the confinement of the team in a specific area, even when communications or sensing among vehicles are lost. We show the effectiveness of the algorithm with an actual formation flight of three aircraft. The algorithm is ready to use for the general public in the open-source Paparazzi autopilot.Comment: 6 pages, submitted to IROS 201

    Path Planning and Real-Time Collision Avoidance Based on the Essential Visibility Graph

    Get PDF
    This paper deals with a novel procedure to generate optimum flight paths for multiple unmanned aircraft in the presence of obstacles and/or no-fly zones. A real-time collision avoidance algorithm solving the optimization problem as a minimum cost piecewise linear path search within the so-called Essential Visibility Graph (EVG) is first developed. Then, a re-planning procedure updating the EVG over a selected prediction time interval is proposed, accounting for the presence of multiple flying vehicles or movable obstacles. The use of Dubins curves allows obtaining smooth paths, compliant with flight mechanics constraints. In view of possible future applications in hybrid scenarios where both manned and unmanned aircraft share the airspace, visual flight rules compliant with International Civil Aviation Organization (ICAO) Annex II Right of Way were implemented. An extensive campaign of numerical simulations was carried out to test the effectiveness of the proposed technique by setting different operational scenarios of increasing complexity. Results show that the algorithm is always able to identify trajectories compliant with ICAO rules for avoiding collisions and assuring a minimum safety distance as well. Furthermore, the low computational burden suggests that the proposed procedure can be considered a promising approach for real-time applications

    Downwash-Aware Trajectory Planning for Large Quadrotor Teams

    Full text link
    We describe a method for formation-change trajectory planning for large quadrotor teams in obstacle-rich environments. Our method decomposes the planning problem into two stages: a discrete planner operating on a graph representation of the workspace, and a continuous refinement that converts the non-smooth graph plan into a set of C^k-continuous trajectories, locally optimizing an integral-squared-derivative cost. We account for the downwash effect, allowing safe flight in dense formations. We demonstrate the computational efficiency in simulation with up to 200 robots and the physical plausibility with an experiment with 32 nano-quadrotors. Our approach can compute safe and smooth trajectories for hundreds of quadrotors in dense environments with obstacles in a few minutes.Comment: 8 page

    An Autonomous Path Planning Method for Unmanned Aerial Vehicle based on A Tangent Intersection and Target Guidance Strategy

    Full text link
    Unmanned aerial vehicle (UAV) path planning enables UAVs to avoid obstacles and reach the target efficiently. To generate high-quality paths without obstacle collision for UAVs, this paper proposes a novel autonomous path planning algorithm based on a tangent intersection and target guidance strategy (APPATT). Guided by a target, the elliptic tangent graph method is used to generate two sub-paths, one of which is selected based on heuristic rules when confronting an obstacle. The UAV flies along the selected sub-path and repeatedly adjusts its flight path to avoid obstacles through this way until the collision-free path extends to the target. Considering the UAV kinematic constraints, the cubic B-spline curve is employed to smooth the waypoints for obtaining a feasible path. Compared with A*, PRM, RRT and VFH, the experimental results show that APPATT can generate the shortest collision-free path within 0.05 seconds for each instance under static environments. Moreover, compared with VFH and RRTRW, APPATT can generate satisfactory collision-free paths under uncertain environments in a nearly real-time manner. It is worth noting that APPATT has the capability of escaping from simple traps within a reasonable time

    Optimal Multi-UAV Trajectory Planning for Filming Applications

    Get PDF
    Teams of multiple Unmanned Aerial Vehicles (UAVs) can be used to record large-scale outdoor scenarios and complementary views of several action points as a promising system for cinematic video recording. Generating the trajectories of the UAVs plays a key role, as it should be ensured that they comply with requirements for system dynamics, smoothness, and safety. The rise of numerical methods for nonlinear optimization is finding a ourishing field in optimization-based approaches to multi- UAV trajectory planning. In particular, these methods are rather promising for video recording applications, as they enable multiple constraints and objectives to be formulated, such as trajectory smoothness, compliance with UAV and camera dynamics, avoidance of obstacles and inter-UAV con icts, and mutual UAV visibility. The main objective of this thesis is to plan online trajectories for multi-UAV teams in video applications, formulating novel optimization problems and solving them in real time. The thesis begins by presenting a framework for carrying out autonomous cinematography missions with a team of UAVs. This framework enables media directors to design missions involving different types of shots with one or multiple cameras, running sequentially or concurrently. Second, the thesis proposes a novel non-linear formulation for the challenging problem of computing optimal multi-UAV trajectories for cinematography, integrating UAV dynamics and collision avoidance constraints, together with cinematographic aspects such as smoothness, gimbal mechanical limits, and mutual camera visibility. Lastly, the thesis describes a method for autonomous aerial recording with distributed lighting by a team of UAVs. The multi-UAV trajectory optimization problem is decoupled into two steps in order to tackle non-linear cinematographic aspects and obstacle avoidance at separate stages. This allows the trajectory planner to perform in real time and to react online to changes in dynamic environments. It is important to note that all the methods in the thesis have been validated by means of extensive simulations and field experiments. Moreover, all the software components have been developed as open source.Los equipos de vehículos aéreos no tripulados (UAV) son sistemas prometedores para grabar eventos cinematográficos, en escenarios exteriores de grandes dimensiones difíciles de cubrir o para tomar vistas complementarias de diferentes puntos de acción. La generación de trayectorias para este tipo de vehículos desempeña un papel fundamental, ya que debe garantizarse que se cumplan requisitos dinámicos, de suavidad y de seguridad. Los enfoques basados en la optimización para la planificación de trayectorias de múltiples UAVs se pueden ver beneficiados por el auge de los métodos numéricos para la resolución de problemas de optimización no lineales. En particular, estos métodos son bastante prometedores para las aplicaciones de grabación de vídeo, ya que permiten formular múltiples restricciones y objetivos, como la suavidad de la trayectoria, el cumplimiento de la dinámica del UAV y de la cámara, la evitación de obstáculos y de conflictos entre UAVs, y la visibilidad mutua. El objetivo principal de esta tesis es planificar trayectorias para equipos multi-UAV en aplicaciones de vídeo, formulando novedosos problemas de optimización y resolviéndolos en tiempo real. La tesis comienza presentando un marco de trabajo para la realización de misiones cinematográficas autónomas con un equipo de UAVs. Este marco permite a los directores de medios de comunicación diseñar misiones que incluyan diferentes tipos de tomas con una o varias cámaras, ejecutadas de forma secuencial o concurrente. En segundo lugar, la tesis propone una novedosa formulación no lineal para el difícil problema de calcular las trayectorias óptimas de los vehículos aéreos no tripulados en cinematografía, integrando en el problema la dinámica de los UAVs y las restricciones para evitar colisiones, junto con aspectos cinematográficos como la suavidad, los límites mecánicos del cardán y la visibilidad mutua de las cámaras. Por último, la tesis describe un método de grabación aérea autónoma con iluminación distribuida por un equipo de UAVs. El problema de optimización de trayectorias se desacopla en dos pasos para abordar los aspectos cinematográficos no lineales y la evitación de obstáculos en etapas separadas. Esto permite al planificador de trayectorias actuar en tiempo real y reaccionar en línea a los cambios en los entornos dinámicos. Es importante señalar que todos los métodos de la tesis han sido validados mediante extensas simulaciones y experimentos de campo. Además, todos los componentes del software se han desarrollado como código abierto

    Perpetual flight in flow fields

    Get PDF
    Tese de Doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Unmanned Aerial Vehicle (UAV) mission planning based on Fast Marching Square (FM²) planner and Differential Evolution (DE)

    Get PDF
    Nowadays, mission planning for Unmanned Aerial Vehicles (UAVs) is a very attractive research field. UAVs have been a research focus for many purposes. In military and civil fields, the UAVs are very used for different missions. Many of these studies require a path planning to perform autonomous flights. Several problems related to the physical limitations of the UAV arise when the planning is carried out, as well as the maintenance of a fixed flight level with respect to the ground to capture videos or overlying images. This work presents an approach to plan missions for UAVs keeping a fixed flight level constraint. An approach is proposed to solve these problems and to generate effective paths in terms of smoothness and safety distance in two different types of environments: 1) 3D urban environments and 2) open field with non-uniform terrain environments. Many proposed activities to be carried out by UAVs in whatever the environment require a control over the altitude for different purposes: energy saving and minimization of costs are some of these objectives. In general terms, the planning is required to avoid all obstacles encountered in the environment and to maintain a fixed flight level during the path execution. For this reason, a mission planning requires robust planning methods. The method used in this work as planner is the Fast Marching Square (FM2) method, which generates a path free of obstacles. As a novelty, the method proposed includes two adjustment parameters. Depending on the values of these parameters, the restriction of flight level can be modified, as well as the smoothness and safety margins from the obstacles of the generated paths. The Dubins airplane model is used to check if the path resulting from the FM2 is feasible according to the constraints of the UAV: its turning rate, climb rate and cruise speed. Besides, this research also presents a novel approach for missions of Coverage Path Planning (CPP) carried out by UAVs in 3D environments. These missions are focused on path planning to cover a certain area in an environment in order to carry out tracking, search or rescue tasks. The methodology followed uses an optimization process based on the Differential Evolution (DE) algorithm in combination with the FM2 planner. Finally, the UAVs formation problem is introduced and addressed in a first stage using the planner proposed in this thesis. A wide variety of simulated experiments have been carried out to illustrate the efficiency and robustness of the approaches presented, obtaining successful results in different urban and open field 3D environments.Hoy en día la planificación de misiones para vehículos aéreos no tripulados (UAV) es un campo de investigación muy atractivo. Los UAV son foco de investigación en numerosas aplicaciones, tanto en el campo civil como militar. Muchas de estas aplicaciones requieren de un sistema de planificación de ruta que permita realizar vuelos autónomos y afrontar problemas relacionados con las limitaciones físicas del UAV y con requerimientos como el nivel de vuelo sobre el suelo para, entre otras funciones, poder capturar videos o imágenes. Este trabajo presenta una propuesta de planificador para vehículos aéreos no tripulados que permite resolver los problemas citados previamente, incluyendo en la planificación las consideraciones cinemáticas del UAV y las restricciones de nivel de vuelo, generando rutas suaves, realizables y suficientemente seguras para dos tipos diferentes de entornos 3D: 1) entornos urbanos y 2) campos abiertos con terrenos no uniformes. El método utilizado en esta tesis como base para la planificación es el método Fast Marching Square (FM2), que genera un camino libre de obstáculos. Como novedad, el método propuesto incluye dos parámetros de ajuste. Dependiendo de los valores de estos parámetros, se puede modificar la restricción de nivel de vuelo, así como la suavidad y los márgenes de seguridad respecto a los obstáculos de las rutas generadas. El modelo cinemático de Dubins se utiliza para verificar si la ruta resultante de nuestro planificador es realizable de acuerdo con las restricciones del UAV: su velocidad de giro, velocidad de ascenso y velocidad de crucero. Además, esta tesis también presenta una propuesta novedosa para la planificación de misiones de Coverage Path Planning (CPP) en entornos 3D. Estas misiones se centran en la planificación de rutas para cubrir un área determinada de un entorno con el fin de llevar a cabo tareas de rastreo, búsqueda o rescate. La metodología seguida utiliza un proceso de optimización basado en el algoritmo Differential Evolution (DE) en combinación con nuestro planificador FM2. Como parte final de la tesis, el problema de formación de UAVs se introduce y aborda en una primera etapa utilizando el planificador FM2 propuesto.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Antonio Giménez Fernández.- Secretario: Luis Santiago Garrido Bullón.- Vocal: Raúl Suárez Feijó
    corecore