39,044 research outputs found

    Bi-Directional Safety Analysis for Product-Line, Multi-Agent Systems

    Get PDF
    Abstract. Safety-critical systems composed of highly similar, semi-autonomous agents are being developed in several application domains. An example of such multi-agent systems is a fleet, or “constellation ” of satellites. In constellations of satellites, each satellite is commonly treated as a distinct autonomous agent that must cooperate to achieve higher-level constellation goals. In previous work, we have shown that modeling a constellation of satellites or spacecraft as a product line of agents (where the agents have many shared commonalities and a few key differences) enables reuse of software analysis and design assets. We have also previously developed efficient safety analysis techniques for product lines. We now propose the use of Bi-Directional Safety Analysis (BDSA) to aid in system certification. We extend BDSA to product lines of multi-agent systems and show how the analysis artifacts thus produced contribute to the software’s safety case for certification purposes. The product-line approach lets us reuse portions of the safety analysis for multiple agents, significantly reducing the burden of certification. We motivate and illustrate this work through a specific application, a product-line, multi-agent satellite constellation

    Motorway Tidal Flow Lane Control

    Get PDF
    A traffic control case of particular importance occurs when inbound and outbound traffic on a motorway stretch is unbalanced throughout the day. This scenario may benefit of a lane management strategy called tidal flow (or reversible) lane control, in which case the direction of a contraflow buffer lane is reversed according to the needs of each direction. This paper proposes a simple and practical real-time strategy for efficient motorway tidal flow lane control. A switching policy based on the fundamental diagram, that requires only aggregated measurements of density (or occupancy), is adopted. A kinematic wave theory-based traffic flow analysis shows that the proposed strategy provides a Pareto-optimal solution. Simulation studies of the A38(M) Aston Expressway (Birmingham, UK), are used to demonstrate its operation. The results confirm an increase of motorway throughput and a smooth operation of the strategy

    Artificial restoration of the linkage between laminin and dystroglycan ameliorates the disease progression of MDC1A muscular dystrophy at all stages

    Get PDF
    Laminin-α2 deficient congenital muscular dystrophy, classified as MDC1A, is a severe progressive muscle-wasting disease that leads to death in early childhood. MDC1A is caused by mutations in lama2, the gene encoding the laminin-α2 chain being part of laminin-2, the main laminin isoform present in the extracellular matrix of muscles and peripheral nerves. Via selfpolymerization, laminin-2 forms the primary laminin scaffold and binds with high affinity to α- dystroglycan on the cell surface, providing a connection to the cytoskeleton via the transmembranous protein β-dystroglycan. Deficiency in laminin-α2 leads to absence of laminin-2 and to upregulation of laminin-8, a laminin isoform that cannot self-polymerize and does not bind to α-dystroglycan. Therefore, in laminin α2-deficient muscle the chain of proteins linking the intracellular contractile apparatus via the plasma membrane to the extracellular matrix is interrupted. Consequently, muscle fibers loose their stability and degenerate what finally leads to a progressive muscle wasting. In previous studies, we have shown that a miniaturized form of the extracellular matrix protein agrin, which is not related to the disease-causing lama2 gene and was designed to contain highaffinity binding sites for the laminins and for α-dystroglycan, was sufficient to markedly improve muscle function and overall health in the dyW-/- mouse model of MDC1A. In a follow-up study we provided additional evidence that mini-agrin, both increases the tolerance to mechanical load but also improves the regeneration capacity of the dystrophic muscle. We now report on our progress towards further testing the use of this approach for the treatment of MDC1A. To test whether mini-agrin application after onset of the disease would still ameliorate the dystrophic symptoms, we have established the inducible tetracycline-regulated “tet-off” expression system in dyW-/- mice to temporally control mini-agrin expression in skeletal muscles. We show that mini-agrin slows down the progression of the dystrophy when applied at birth or in advanced stages of the disease. However, the extent of the amelioration depends on the dystrophic condition of the muscle at the time of mini-agrin application. Thus, the earlier miniagrin is applied, the higher is the profit of its beneficial properties. In addition to gene therapeutical approaches, the increase of endogenous agrin expression levels in skeletal muscles by pharmacologically active compounds would be a safe and promising strategy for the treatment of MDC1A. To evaluate the potential and pave the way to further expand on the development of such a treatment, we determined whether full-length agrin ameliorates the dystrophic phenotype to a comparable extent as it was observed by application of mini-agrin. We provide evidence that constitutive overexpression of chick full-length agrin in dyW-/- muscle ameliorates the dystrophic phenotype, although not as pronounced as mini-agrin does. In conclusion, our results are conceptual proof that linkage of laminin to the muscle fiber membrane is a means to treat MDC1A at any stage of the disease. Our findings definitely encourage to further expanding on this therapeutic concept, especially in combination with treatment using functionally different approaches. Moreover, these experiments set the basis for further developing clinically feasible and relevant application methods such as gene therapy4 and/or the screening of small molecules able to upregulate production of agrin in muscle

    Multi-objective Compositions for Collision-Free Connectivity Maintenance in Teams of Mobile Robots

    Get PDF
    Compositional barrier functions are proposed in this paper to systematically compose multiple objectives for teams of mobile robots. The objectives are first encoded as barrier functions, and then composed using AND and OR logical operators. The advantage of this approach is that compositional barrier functions can provably guarantee the simultaneous satisfaction of all composed objectives. The compositional barrier functions are applied to the example of ensuring collision avoidance and static/dynamical graph connectivity of teams of mobile robots. The resulting composite safety and connectivity barrier certificates are verified experimentally on a team of four mobile robots.Comment: To appear in 55th IEEE Conference on Decision and Control, December 12-14, 2016, Las Vegas, NV, US

    Open TURNS: An industrial software for uncertainty quantification in simulation

    Full text link
    The needs to assess robust performances for complex systems and to answer tighter regulatory processes (security, safety, environmental control, and health impacts, etc.) have led to the emergence of a new industrial simulation challenge: to take uncertainties into account when dealing with complex numerical simulation frameworks. Therefore, a generic methodology has emerged from the joint effort of several industrial companies and academic institutions. EDF R&D, Airbus Group and Phimeca Engineering started a collaboration at the beginning of 2005, joined by IMACS in 2014, for the development of an Open Source software platform dedicated to uncertainty propagation by probabilistic methods, named OpenTURNS for Open source Treatment of Uncertainty, Risk 'N Statistics. OpenTURNS addresses the specific industrial challenges attached to uncertainties, which are transparency, genericity, modularity and multi-accessibility. This paper focuses on OpenTURNS and presents its main features: openTURNS is an open source software under the LGPL license, that presents itself as a C++ library and a Python TUI, and which works under Linux and Windows environment. All the methodological tools are described in the different sections of this paper: uncertainty quantification, uncertainty propagation, sensitivity analysis and metamodeling. A section also explains the generic wrappers way to link openTURNS to any external code. The paper illustrates as much as possible the methodological tools on an educational example that simulates the height of a river and compares it to the height of a dyke that protects industrial facilities. At last, it gives an overview of the main developments planned for the next few years
    • …
    corecore