934 research outputs found

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    SDSF : social-networking trust based distributed data storage and co-operative information fusion.

    Get PDF
    As of 2014, about 2.5 quintillion bytes of data are created each day, and 90% of the data in the world was created in the last two years alone. The storage of this data can be on external hard drives, on unused space in peer-to-peer (P2P) networks or using the more currently popular approach of storing in the Cloud. When the users store their data in the Cloud, the entire data is exposed to the administrators of the services who can view and possibly misuse the data. With the growing popularity and usage of Cloud storage services like Google Drive, Dropbox etc., the concerns of privacy and security are increasing. Searching for content or documents, from this distributed stored data, given the rate of data generation, is a big challenge. Information fusion is used to extract information based on the query of the user, and combine the data and learn useful information. This problem is challenging if the data sources are distributed and heterogeneous in nature where the trustworthiness of the documents may be varied. This thesis proposes two innovative solutions to resolve both of these problems. Firstly, to remedy the situation of security and privacy of stored data, we propose an innovative Social-based Distributed Data Storage and Trust based co-operative Information Fusion Framework (SDSF). The main objective is to create a framework that assists in providing a secure storage system while not overloading a single system using a P2P like approach. This framework allows the users to share storage resources among friends and acquaintances without compromising the security or privacy and enjoying all the benefits that the Cloud storage offers. The system fragments the data and encodes it to securely store it on the unused storage capacity of the data owner\u27s friends\u27 resources. The system thus gives a centralized control to the user over the selection of peers to store the data. Secondly, to retrieve the stored distributed data, the proposed system performs the fusion also from distributed sources. The technique uses several algorithms to ensure the correctness of the query that is used to retrieve and combine the data to improve the information fusion accuracy and efficiency for combining the heterogeneous, distributed and massive data on the Cloud for time critical operations. We demonstrate that the retrieved documents are genuine when the trust scores are also used while retrieving the data sources. The thesis makes several research contributions. First, we implement Social Storage using erasure coding. Erasure coding fragments the data, encodes it, and through introduction of redundancy resolves issues resulting from devices failures. Second, we exploit the inherent concept of trust that is embedded in social networks to determine the nodes and build a secure net-work where the fragmented data should be stored since the social network consists of a network of friends, family and acquaintances. The trust between the friends, and availability of the devices allows the user to make an informed choice about where the information should be stored using `k\u27 optimal paths. Thirdly, for the purpose of retrieval of this distributed stored data, we propose information fusion on distributed data using a combination of Enhanced N-grams (to ensure correctness of the query), Semantic Machine Learning (to extract the documents based on the context and not just bag of words and also considering the trust score) and Map Reduce (NSM) Algorithms. Lastly we evaluate the performance of distributed storage of SDSF using era- sure coding and identify the social storage providers based on trust and evaluate their trustworthiness. We also evaluate the performance of our information fusion algorithms in distributed storage systems. Thus, the system using SDSF framework, implements the beneficial features of P2P networks and Cloud storage while avoiding the pitfalls of these systems. The multi-layered encrypting ensures that all other users, including the system administrators cannot decode the stored data. The application of NSM algorithm improves the effectiveness of fusion since large number of genuine documents are retrieved for fusion

    Universally Composable Security With Local Adversaries

    Get PDF
    The traditional approach to formalizing ideal-model based definitions of security for multi-party protocols models adversaries (both real and ideal) as centralized entities that control all parties that deviate from the protocol. While this centralized-adversary modeling suffices for capturing basic security properties such as secrecy of local inputs and correctness of outputs against coordinated attacks, it turns out to be inadequate for capturing security properties that involve restricting the sharing of information between separate adversarial entities. Indeed, to capture collusion-freeness and and game-theoretic solution concepts, Alwen et.al. [Crypto, 2012] propose a new ideal-model based definitional framework that involves a de-centralized adversary. We propose an alternative framework to that of Alwen et. al. We then observe that our framework allows capturing not only collusion-freeness and game-theoretic solution concepts, but also several other properties that involve the restriction of information flow among adversarial entities. These include some natural flavors of anonymity, deniability, timing separation, and information confinement. We also demonstrate the inability of existing formalisms to capture these properties. We then prove strong composition properties for the proposed framework, and use these properties to demonstrate the security, within the new framework, of two very different protocols for securely evaluating any function of the parties’ inputs

    Standards in Disruptive Innovation: Assessment Method and Application to Cloud Computing

    Get PDF
    Die Dissertation schlĂ€gt ein konzeptionelles Informationsmodell und eine Methode zur Bewertung von Technologie-Standards im Kontext von Disruptiven Innovationen vor. Das konzeptionelle Informationsmodell stellt die Grundlage zur Strukturierung relevanter Informationen dar. Die Methode definiert ein Prozessmodell, das die Instanziierung des Informationsmodells fĂŒr verschiedenen DomĂ€nen beschreibt und Stakeholder bei der Klassifikation und Evaluation von Technologie-Standards unterstĂŒtzt

    System Qualities Ontology, Tradespace and Affordability (SQOTA) Project – Phase 4

    Get PDF
    This task was proposed and established as a result of a pair of 2012 workshops sponsored by the DoD Engineered Resilient Systems technology priority area and by the SERC. The workshops focused on how best to strengthen DoD’s capabilities in dealing with its systems’ non-functional requirements, often also called system qualities, properties, levels of service, and –ilities. The term –ilities was often used during the workshops, and became the title of the resulting SERC research task: “ilities Tradespace and Affordability Project (iTAP).” As the project progressed, the term “ilities” often became a source of confusion, as in “Do your results include considerations of safety, security, resilience, etc., which don’t have “ility” in their names?” Also, as our ontology, methods, processes, and tools became of interest across the DoD and across international and standards communities, we found that the term “System Qualities” was most often used. As a result, we are changing the name of the project to “System Qualities Ontology, Tradespace, and Affordability (SQOTA).” Some of this year’s university reports still refer to the project as “iTAP.”This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004
    • 

    corecore