1,182 research outputs found

    κ°•μΈν•œ λŒ€ν™”ν˜• μ˜μƒ λΆ„ν•  μ•Œκ³ λ¦¬μ¦˜μ„ μœ„ν•œ μ‹œλ“œ 정보 ν™•μž₯ 기법에 λŒ€ν•œ 연ꡬ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·컴퓨터곡학뢀, 2021. 2. 이경무.Segmentation of an area corresponding to a desired object in an image is essential to computer vision problems. This is because most algorithms are performed in semantic units when interpreting or analyzing images. However, segmenting the desired object from a given image is an ambiguous issue. The target object varies depending on user and purpose. To solve this problem, an interactive segmentation technique has been proposed. In this approach, segmentation was performed in the desired direction according to interaction with the user. In this case, seed information provided by the user plays an important role. If the seed provided by a user contain abundant information, the accuracy of segmentation increases. However, providing rich seed information places much burden on the users. Therefore, the main goal of the present study was to obtain satisfactory segmentation results using simple seed information. We primarily focused on converting the provided sparse seed information to a rich state so that accurate segmentation results can be derived. To this end, a minimum user input was taken and enriched it through various seed enrichment techniques. A total of three interactive segmentation techniques was proposed based on: (1) Seed Expansion, (2) Seed Generation, (3) Seed Attention. Our seed enriching type comprised expansion of area around a seed, generation of new seed in a new position, and attention to semantic information. First, in seed expansion, we expanded the scope of the seed. We integrated reliable pixels around the initial seed into the seed set through an expansion step composed of two stages. Through the extended seed covering a wider area than the initial seed, the seed's scarcity and imbalance problems was resolved. Next, in seed generation, we created a seed at a new point, but not around the seed. We trained the system by imitating the user behavior through providing a new seed point in the erroneous region. By learning the user's intention, our model could e ciently create a new seed point. The generated seed helped segmentation and could be used as additional information for weakly supervised learning. Finally, through seed attention, we put semantic information in the seed. Unlike the previous models, we integrated both the segmentation process and seed enrichment process. We reinforced the seed information by adding semantic information to the seed instead of spatial expansion. The seed information was enriched through mutual attention with feature maps generated during the segmentation process. The proposed models show superiority compared to the existing techniques through various experiments. To note, even with sparse seed information, our proposed seed enrichment technique gave by far more accurate segmentation results than the other existing methods.μ˜μƒμ—μ„œ μ›ν•˜λŠ” 물체 μ˜μ—­μ„ μž˜λΌλ‚΄λŠ” 것은 컴퓨터 λΉ„μ „ λ¬Έμ œμ—μ„œ ν•„μˆ˜μ μΈ μš”μ†Œμ΄λ‹€. μ˜μƒμ„ ν•΄μ„ν•˜κ±°λ‚˜ 뢄석할 λ•Œ, λŒ€λΆ€λΆ„μ˜ μ•Œκ³ λ¦¬μ¦˜λ“€μ΄ 의미둠적인 λ‹¨μœ„ 기반으둜 λ™μž‘ν•˜κΈ° λ•Œλ¬Έμ΄λ‹€. κ·ΈλŸ¬λ‚˜ μ˜μƒμ—μ„œ 물체 μ˜μ—­μ„ λΆ„ν• ν•˜λŠ” 것은 λͺ¨ν˜Έν•œ λ¬Έμ œμ΄λ‹€. μ‚¬μš©μžμ™€ λͺ©μ μ— 따라 μ›ν•˜λŠ” 물체 μ˜μ—­μ΄ 달라지기 λ•Œλ¬Έμ΄λ‹€. 이λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•΄ μ‚¬μš©μžμ™€μ˜ ꡐλ₯˜λ₯Ό 톡해 μ›ν•˜λŠ” λ°©ν–₯으둜 μ˜μƒ 뢄할을 μ§„ν–‰ν•˜λŠ” λŒ€ν™”ν˜• μ˜μƒ λΆ„ν•  기법이 μ‚¬μš©λœλ‹€. μ—¬κΈ°μ„œ μ‚¬μš©μžκ°€ μ œκ³΅ν•˜λŠ” μ‹œλ“œ 정보가 μ€‘μš”ν•œ 역할을 ν•œλ‹€. μ‚¬μš©μžμ˜ μ˜λ„λ₯Ό λ‹΄κ³  μžˆλŠ” μ‹œλ“œ 정보가 μ •ν™•ν• μˆ˜λ‘ μ˜μƒ λΆ„ν• μ˜ 정확도도 μ¦κ°€ν•˜κ²Œ λœλ‹€. κ·ΈλŸ¬λ‚˜ ν’λΆ€ν•œ μ‹œλ“œ 정보λ₯Ό μ œκ³΅ν•˜λŠ” 것은 μ‚¬μš©μžμ—κ²Œ λ§Žμ€ 뢀담을 주게 λœλ‹€. κ·ΈλŸ¬λ―€λ‘œ κ°„λ‹¨ν•œ μ‹œλ“œ 정보λ₯Ό μ‚¬μš©ν•˜μ—¬ λ§Œμ‘±ν• λ§Œν•œ λΆ„ν•  κ²°κ³Όλ₯Ό μ–»λŠ” 것이 μ£Όμš” λͺ©μ μ΄ λœλ‹€. μš°λ¦¬λŠ” 제곡된 ν¬μ†Œν•œ μ‹œλ“œ 정보λ₯Ό λ³€ν™˜ν•˜λŠ” μž‘μ—…μ— μ΄ˆμ μ„ λ‘μ—ˆλ‹€. λ§Œμ•½ μ‹œλ“œ 정보가 ν’λΆ€ν•˜κ²Œ λ³€ν™˜λœλ‹€λ©΄ μ •ν™•ν•œ μ˜μƒ λΆ„ν•  κ²°κ³Όλ₯Ό 얻을 수 있기 λ•Œλ¬Έμ΄λ‹€. κ·ΈλŸ¬λ―€λ‘œ λ³Έ ν•™μœ„ λ…Όλ¬Έμ—μ„œλŠ” μ‹œλ“œ 정보λ₯Ό ν’λΆ€ν•˜κ²Œ ν•˜λŠ” 기법듀을 μ œμ•ˆν•œλ‹€. μ΅œμ†Œν•œμ˜ μ‚¬μš©μž μž…λ ₯을 κ°€μ •ν•˜κ³  이λ₯Ό λ‹€μ–‘ν•œ μ‹œλ“œ ν™•μž₯ 기법을 톡해 λ³€ν™˜ν•œλ‹€. μš°λ¦¬λŠ” μ‹œλ“œ ν™•λŒ€, μ‹œλ“œ 생성, μ‹œλ“œ 주의 집쀑에 κΈ°λ°˜ν•œ 총 μ„Έ κ°€μ§€μ˜ λŒ€ν™”ν˜• μ˜μƒ λΆ„ν•  기법을 μ œμ•ˆν•œλ‹€. 각각 μ‹œλ“œ μ£Όλ³€μœΌλ‘œμ˜ μ˜μ—­ ν™•λŒ€, μƒˆλ‘œμš΄ 지점에 μ‹œλ“œ 생성, 의미둠적 정보에 μ£Όλͺ©ν•˜λŠ” ν˜•νƒœμ˜ μ‹œλ“œ ν™•μž₯ 기법을 μ‚¬μš©ν•œλ‹€. λ¨Όμ € μ‹œλ“œ ν™•λŒ€μ— κΈ°λ°˜ν•œ κΈ°λ²•μ—μ„œ μš°λ¦¬λŠ” μ‹œλ“œμ˜ μ˜μ—­ ν™•μž₯을 λͺ©ν‘œλ‘œ ν•œλ‹€. 두 λ‹¨κ³„λ‘œ κ΅¬μ„±λœ ν™•λŒ€ 과정을 톡해 처음 μ‹œλ“œ μ£Όλ³€μ˜ λΉ„μŠ·ν•œ 픽셀듀을 μ‹œλ“œ μ˜μ—­μœΌλ‘œ νŽΈμž…ν•œλ‹€. μ΄λ ‡κ²Œ ν™•μž₯된 μ‹œλ“œλ₯Ό μ‚¬μš©ν•¨μœΌλ‘œμ¨ μ‹œλ“œμ˜ ν¬μ†Œν•¨κ³Ό λΆˆκ· ν˜•μœΌλ‘œ μΈν•œ 문제λ₯Ό ν•΄κ²°ν•  수 μžˆλ‹€. λ‹€μŒμœΌλ‘œ μ‹œλ“œ 생성에 κΈ°λ°˜ν•œ κΈ°λ²•μ—μ„œ μš°λ¦¬λŠ” μ‹œλ“œ 주변이 μ•„λ‹Œ μƒˆλ‘œμš΄ 지점에 μ‹œλ“œλ₯Ό μƒμ„±ν•œλ‹€. μš°λ¦¬λŠ” μ˜€μ°¨κ°€ λ°œμƒν•œ μ˜μ—­μ— μ‚¬μš©μžκ°€ μƒˆλ‘œμš΄ μ‹œλ“œλ₯Ό μ œκ³΅ν•˜λŠ” λ™μž‘μ„ λͺ¨λ°©ν•˜μ—¬ μ‹œμŠ€ν…œμ„ ν•™μŠ΅ν•˜μ˜€λ‹€. μ‚¬μš©μžμ˜ μ˜λ„λ₯Ό ν•™μŠ΅ν•¨μœΌλ‘œμ¨ 효과적으둜 μ‹œλ“œλ₯Ό 생성할 수 μžˆλ‹€. μƒμ„±λœ μ‹œλ“œλŠ” μ˜μƒ λΆ„ν• μ˜ 정확도λ₯Ό 높일 뿐만 μ•„λ‹ˆλΌ μ•½μ§€λ„ν•™μŠ΅μ„ μœ„ν•œ λ°μ΄ν„°λ‘œμ¨ ν™œμš©λ  수 μžˆλ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ μ‹œλ“œ 주의 집쀑을 ν™œμš©ν•œ κΈ°λ²•μ—μ„œ μš°λ¦¬λŠ” 의미둠적 정보λ₯Ό μ‹œλ“œμ— λ‹΄λŠ”λ‹€. 기쑴에 μ œμ•ˆν•œ 기법듀과 달리 μ˜μƒ λΆ„ν•  λ™μž‘κ³Ό μ‹œλ“œ ν™•μž₯ λ™μž‘μ΄ ν†΅ν•©λœ λͺ¨λΈμ„ μ œμ•ˆν•œλ‹€. μ‹œλ“œ μ •λ³΄λŠ” μ˜μƒ λΆ„ν•  λ„€νŠΈμ›Œν¬μ˜ νŠΉμ§•λ§΅κ³Ό μƒν˜Έ ꡐλ₯˜ν•˜λ©° κ·Έ 정보가 풍뢀해진닀. μ œμ•ˆν•œ λͺ¨λΈλ“€μ€ λ‹€μ–‘ν•œ μ‹€ν—˜μ„ 톡해 κΈ°μ‘΄ 기법 λŒ€λΉ„ μš°μˆ˜ν•œ μ„±λŠ₯을 κΈ°λ‘ν•˜μ˜€λ‹€. 특히 μ‹œλ“œκ°€ λΆ€μ‘±ν•œ μƒν™©μ—μ„œ μ‹œλ“œ ν™•μž₯ 기법듀은 ν›Œλ₯­ν•œ λŒ€ν™”ν˜• μ˜μƒ λΆ„ν•  μ„±λŠ₯을 λ³΄μ˜€λ‹€.1 Introduction 1 1.1 Previous Works 2 1.2 Proposed Methods 4 2 Interactive Segmentation with Seed Expansion 9 2.1 Introduction 9 2.2 Proposed Method 12 2.2.1 Background 13 2.2.2 Pyramidal RWR 16 2.2.3 Seed Expansion 19 2.2.4 Re nement with Global Information 24 2.3 Experiments 27 2.3.1 Dataset 27 2.3.2 Implement Details 28 2.3.3 Performance 29 2.3.4 Contribution of Each Part 30 2.3.5 Seed Consistency 31 2.3.6 Running Time 33 2.4 Summary 34 3 Interactive Segmentation with Seed Generation 37 3.1 Introduction 37 3.2 Related Works 40 3.3 Proposed Method 41 3.3.1 System Overview 41 3.3.2 Markov Decision Process 42 3.3.3 Deep Q-Network 46 3.3.4 Model Architecture 47 3.4 Experiments 48 3.4.1 Implement Details 48 3.4.2 Performance 49 3.4.3 Ablation Study 53 3.4.4 Other Datasets 55 3.5 Summary 58 4 Interactive Segmentation with Seed Attention 61 4.1 Introduction 61 4.2 Related Works 64 4.3 Proposed Method 65 4.3.1 Interactive Segmentation Network 65 4.3.2 Bi-directional Seed Attention Module 67 4.4 Experiments 70 4.4.1 Datasets 70 4.4.2 Metrics 70 4.4.3 Implement Details 71 4.4.4 Performance 71 4.4.5 Ablation Study 76 4.4.6 Seed enrichment methods 79 4.5 Summary 82 5 Conclusions 87 5.1 Summary 89 Bibliography 90 ꡭ문초둝 103Docto

    MOSE: A New Dataset for Video Object Segmentation in Complex Scenes

    Full text link
    Video object segmentation (VOS) aims at segmenting a particular object throughout the entire video clip sequence. The state-of-the-art VOS methods have achieved excellent performance (e.g., 90+% J&F) on existing datasets. However, since the target objects in these existing datasets are usually relatively salient, dominant, and isolated, VOS under complex scenes has rarely been studied. To revisit VOS and make it more applicable in the real world, we collect a new VOS dataset called coMplex video Object SEgmentation (MOSE) to study the tracking and segmenting objects in complex environments. MOSE contains 2,149 video clips and 5,200 objects from 36 categories, with 431,725 high-quality object segmentation masks. The most notable feature of MOSE dataset is complex scenes with crowded and occluded objects. The target objects in the videos are commonly occluded by others and disappear in some frames. To analyze the proposed MOSE dataset, we benchmark 18 existing VOS methods under 4 different settings on the proposed MOSE dataset and conduct comprehensive comparisons. The experiments show that current VOS algorithms cannot well perceive objects in complex scenes. For example, under the semi-supervised VOS setting, the highest J&F by existing state-of-the-art VOS methods is only 59.4% on MOSE, much lower than their ~90% J&F performance on DAVIS. The results reveal that although excellent performance has been achieved on existing benchmarks, there are unresolved challenges under complex scenes and more efforts are desired to explore these challenges in the future. The proposed MOSE dataset has been released at https://henghuiding.github.io/MOSE.Comment: MOSE Dataset Repor

    A deep learning approach for intrusion detection in Internet of Things using bi-directional long short-term memory recurrent neural network

    Get PDF
    Internet-of-Things connects every β€˜thing’ with the Internet and allows these β€˜things’ to communicate with each other. IoT comprises of innumerous interconnected devices of diverse complexities and trends. This fundamental nature of IoT structure intensifies the amount of attack targets which might affect the sustainable growth of IoT. Thus, security issues become a crucial factor to be addressed. A novel deep learning approach have been proposed in this thesis, for performing real-time detections of security threats in IoT systems using the Bi-directional Long Short-Term Memory Recurrent Neural Network (BLSTM RNN). The proposed approach have been implemented through Google TensorFlow implementation framework and Python programming language. To train and test the proposed approach, UNSW-NB15 dataset has been employed, which is the most up-to-date benchmark dataset with sequential samples and contemporary attack patterns. This thesis work employs binary classification of attack and normal patterns. The experimental result demonstrates the proficiency of the introduced model with respect to recall, precision, FAR and f-1 score. The model attains over 97% detection accuracy. The test result demonstrates that BLSTM RNN is profoundly effective for building highly efficient model for intrusion detection and offers a novel research methodology
    • …
    corecore