175 research outputs found

    ๋น„๋””์˜ค ํ”„๋ ˆ์ž„ ๋ณด๊ฐ„์„ ์œ„ํ•œ ๋‹ค์ค‘ ๋ฒกํ„ฐ ๊ธฐ๋ฐ˜์˜ MEMC ๋ฐ ์‹ฌ์ธต CNN

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2019. 2. ์ดํ˜์žฌ.Block-based hierarchical motion estimations are widely used and are successful in generating high-quality interpolation. However, it still fails in the motion estimation of small objects when a background region moves in a different direction. This is because the motion of small objects is neglected by the down-sampling and over-smoothing operations at the top level of image pyramids in the maximum a posterior (MAP) method. Consequently, the motion vector of small objects cannot be detected at the bottom level, and therefore, the small objects often appear deformed in an interpolated frame. This thesis proposes a novel algorithm that preserves the motion vector of the small objects by adding a secondary motion vector candidate that represents the movement of the small objects. This additional candidate is always propagated from the top to the bottom layers of the image pyramid. Experimental results demonstrate that the intermediate frame interpolated by the proposed algorithm significantly improves the visual quality when compared with conventional MAP-based frame interpolation. In motion compensated frame interpolation, a repetition pattern in an image makes it difficult to derive an accurate motion vector because multiple similar local minima exist in the search space of the matching cost for motion estimation. In order to improve the accuracy of motion estimation in a repetition region, this thesis attempts a semi-global approach that exploits both local and global characteristics of a repetition region. A histogram of the motion vector candidates is built by using a voter based voting system that is more reliable than an elector based voting system. Experimental results demonstrate that the proposed method significantly outperforms the previous local approach in term of both objective peak signal-to-noise ratio (PSNR) and subjective visual quality. In video frame interpolation or motion-compensated frame rate up-conversion (MC-FRUC), motion compensation along unidirectional motion trajectories directly causes overlaps and holes issues. To solve these issues, this research presents a new algorithm for bidirectional motion compensated frame interpolation. Firstly, the proposed method generates bidirectional motion vectors from two unidirectional motion vector fields (forward and backward) obtained from the unidirectional motion estimations. It is done by projecting the forward and backward motion vectors into the interpolated frame. A comprehensive metric as an extension of the distance between a projected block and an interpolated block is proposed to compute weighted coefficients in the case when the interpolated block has multiple projected ones. Holes are filled based on vector median filter of non-hole available neighbor blocks. The proposed method outperforms existing MC-FRUC methods and removes block artifacts significantly. Video frame interpolation with a deep convolutional neural network (CNN) is also investigated in this thesis. Optical flow and video frame interpolation are considered as a chicken-egg problem such that one problem affects the other and vice versa. This thesis presents a stack of networks that are trained to estimate intermediate optical flows from the very first intermediate synthesized frame and later the very end interpolated frame is generated by the second synthesis network that is fed by stacking the very first one and two learned intermediate optical flows based warped frames. The primary benefit is that it glues two problems into one comprehensive framework that learns altogether by using both an analysis-by-synthesis technique for optical flow estimation and vice versa, CNN kernels based synthesis-by-analysis. The proposed network is the first attempt to bridge two branches of previous approaches, optical flow based synthesis and CNN kernels based synthesis into a comprehensive network. Experiments are carried out with various challenging datasets, all showing that the proposed network outperforms the state-of-the-art methods with significant margins for video frame interpolation and the estimated optical flows are accurate for challenging movements. The proposed deep video frame interpolation network to post-processing is applied to the improvement of the coding efficiency of the state-of-art video compress standard, HEVC/H.265 and experimental results prove the efficiency of the proposed network.๋ธ”๋ก ๊ธฐ๋ฐ˜ ๊ณ„์ธต์  ์›€์ง์ž„ ์ถ”์ •์€ ๊ณ ํ™”์งˆ์˜ ๋ณด๊ฐ„ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์–ด ํญ๋„“๊ฒŒ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ๋ฐฐ๊ฒฝ ์˜์—ญ์ด ์›€์ง์ผ ๋•Œ, ์ž‘์€ ๋ฌผ์ฒด์— ๋Œ€ํ•œ ์›€์ง์ž„ ์ถ”์ • ์„ฑ๋Šฅ์€ ์—ฌ์ „ํžˆ ์ข‹์ง€ ์•Š๋‹ค. ์ด๋Š” maximum a posterior (MAP) ๋ฐฉ์‹์œผ๋กœ ์ด๋ฏธ์ง€ ํ”ผ๋ผ๋ฏธ๋“œ์˜ ์ตœ์ƒ์œ„ ๋ ˆ๋ฒจ์—์„œ down-sampling๊ณผ over-smoothing์œผ๋กœ ์ธํ•ด ์ž‘์€ ๋ฌผ์ฒด์˜ ์›€์ง์ž„์ด ๋ฌด์‹œ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ด๋ฏธ์ง€ ํ”ผ๋ผ๋ฏธ๋“œ์˜ ์ตœํ•˜์œ„ ๋ ˆ๋ฒจ์—์„œ ์ž‘์€ ๋ฌผ์ฒด์˜ ์›€์ง์ž„ ๋ฒกํ„ฐ๋Š” ๊ฒ€์ถœ๋  ์ˆ˜ ์—†์–ด ๋ณด๊ฐ„ ์ด๋ฏธ์ง€์—์„œ ์ž‘์€ ๋ฌผ์ฒด๋Š” ์ข…์ข… ๋ณ€ํ˜•๋œ ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ธ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ž‘์€ ๋ฌผ์ฒด์˜ ์›€์ง์ž„์„ ๋‚˜ํƒ€๋‚ด๋Š” 2์ฐจ ์›€์ง์ž„ ๋ฒกํ„ฐ ํ›„๋ณด๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ ์ž‘์€ ๋ฌผ์ฒด์˜ ์›€์ง์ž„ ๋ฒกํ„ฐ๋ฅผ ๋ณด์กดํ•˜๋Š” ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ถ”๊ฐ€๋œ ์›€์ง์ž„ ๋ฒกํ„ฐ ํ›„๋ณด๋Š” ํ•ญ์ƒ ์ด๋ฏธ์ง€ ํ”ผ๋ผ๋ฏธ๋“œ์˜ ์ตœ์ƒ์œ„์—์„œ ์ตœํ•˜์œ„ ๋ ˆ๋ฒจ๋กœ ์ „ํŒŒ๋œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋ณด๊ฐ„ ์ƒ์„ฑ ํ”„๋ ˆ์ž„์ด ๊ธฐ์กด MAP ๊ธฐ๋ฐ˜ ๋ณด๊ฐ„ ๋ฐฉ์‹์œผ๋กœ ์ƒ์„ฑ๋œ ํ”„๋ ˆ์ž„๋ณด๋‹ค ์ด๋ฏธ์ง€ ํ™”์งˆ์ด ์ƒ๋‹นํžˆ ํ–ฅ์ƒ๋จ์„ ๋ณด์—ฌ์ค€๋‹ค. ์›€์ง์ž„ ๋ณด์ƒ ํ”„๋ ˆ์ž„ ๋ณด๊ฐ„์—์„œ, ์ด๋ฏธ์ง€ ๋‚ด์˜ ๋ฐ˜๋ณต ํŒจํ„ด์€ ์›€์ง์ž„ ์ถ”์ •์„ ์œ„ํ•œ ์ •ํ•ฉ ์˜ค์ฐจ ํƒ์ƒ‰ ์‹œ ๋‹ค์ˆ˜์˜ ์œ ์‚ฌ local minima๊ฐ€ ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ •ํ™•ํ•œ ์›€์ง์ž„ ๋ฒกํ„ฐ ์œ ๋„๋ฅผ ์–ด๋ ต๊ฒŒ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ฐ˜๋ณต ํŒจํ„ด์—์„œ์˜ ์›€์ง์ž„ ์ถ”์ •์˜ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ฐ˜๋ณต ์˜์—ญ์˜ localํ•œ ํŠน์„ฑ๊ณผ globalํ•œ ํŠน์„ฑ์„ ๋™์‹œ์— ํ™œ์šฉํ•˜๋Š” semi-globalํ•œ ์ ‘๊ทผ์„ ์‹œ๋„ํ•œ๋‹ค. ์›€์ง์ž„ ๋ฒกํ„ฐ ํ›„๋ณด์˜ ํžˆ์Šคํ† ๊ทธ๋žจ์€ ์„ ๊ฑฐ ๊ธฐ๋ฐ˜ ํˆฌํ‘œ ์‹œ์Šคํ…œ๋ณด๋‹ค ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์œ ๊ถŒ์ž ๊ธฐ๋ฐ˜ ํˆฌํ‘œ ์‹œ์Šคํ…œ ๊ธฐ๋ฐ˜์œผ๋กœ ํ˜•์„ฑ๋œ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์ด ์ด์ „์˜ localํ•œ ์ ‘๊ทผ๋ฒ•๋ณด๋‹ค peak signal-to-noise ratio (PSNR)์™€ ์ฃผ๊ด€์  ํ™”์งˆ ํŒ๋‹จ ๊ด€์ ์—์„œ ์ƒ๋‹นํžˆ ์šฐ์ˆ˜ํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋น„๋””์˜ค ํ”„๋ ˆ์ž„ ๋ณด๊ฐ„ ๋˜๋Š” ์›€์ง์ž„ ๋ณด์ƒ ํ”„๋ ˆ์ž„์œจ ์ƒํ–ฅ ๋ณ€ํ™˜ (MC-FRUC)์—์„œ, ๋‹จ๋ฐฉํ–ฅ ์›€์ง์ž„ ๊ถค์ ์— ๋”ฐ๋ฅธ ์›€์ง์ž„ ๋ณด์ƒ์€ overlap๊ณผ hole ๋ฌธ์ œ๋ฅผ ์ผ์œผํ‚จ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์–‘๋ฐฉํ–ฅ ์›€์ง์ž„ ๋ณด์ƒ ํ”„๋ ˆ์ž„ ๋ณด๊ฐ„์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ €, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ๋‹จ๋ฐฉํ–ฅ ์›€์ง์ž„ ์ถ”์ •์œผ๋กœ๋ถ€ํ„ฐ ์–ป์–ด์ง„ ๋‘ ๊ฐœ์˜ ๋‹จ๋ฐฉํ–ฅ ์›€์ง์ž„ ์˜์—ญ(์ „๋ฐฉ ๋ฐ ํ›„๋ฐฉ)์œผ๋กœ๋ถ€ํ„ฐ ์–‘๋ฐฉํ–ฅ ์›€์ง์ž„ ๋ฒกํ„ฐ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์ด๋Š” ์ „๋ฐฉ ๋ฐ ํ›„๋ฐฉ ์›€์ง์ž„ ๋ฒกํ„ฐ๋ฅผ ๋ณด๊ฐ„ ํ”„๋ ˆ์ž„์— ํˆฌ์˜ํ•จ์œผ๋กœ์จ ์ˆ˜ํ–‰๋œ๋‹ค. ๋ณด๊ฐ„๋œ ๋ธ”๋ก์— ์—ฌ๋Ÿฌ ๊ฐœ์˜ ํˆฌ์˜๋œ ๋ธ”๋ก์ด ์žˆ๋Š” ๊ฒฝ์šฐ, ํˆฌ์˜๋œ ๋ธ”๋ก๊ณผ ๋ณด๊ฐ„๋œ ๋ธ”๋ก ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ํ™•์žฅํ•˜๋Š” ๊ธฐ์ค€์ด ๊ฐ€์ค‘ ๊ณ„์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ๋‹ค. Hole์€ hole์ด ์•„๋‹Œ ์ด์›ƒ ๋ธ”๋ก์˜ vector median filter๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ฒ˜๋ฆฌ๋œ๋‹ค. ์ œ์•ˆ ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ MC-FRUC๋ณด๋‹ค ์„ฑ๋Šฅ์ด ์šฐ์ˆ˜ํ•˜๋ฉฐ, ๋ธ”๋ก ์—ดํ™”๋ฅผ ์ƒ๋‹นํžˆ ์ œ๊ฑฐํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” CNN์„ ์ด์šฉํ•œ ๋น„๋””์˜ค ํ”„๋ ˆ์ž„ ๋ณด๊ฐ„์— ๋Œ€ํ•ด์„œ๋„ ๋‹ค๋ฃฌ๋‹ค. Optical flow ๋ฐ ๋น„๋””์˜ค ํ”„๋ ˆ์ž„ ๋ณด๊ฐ„์€ ํ•œ ๊ฐ€์ง€ ๋ฌธ์ œ๊ฐ€ ๋‹ค๋ฅธ ๋ฌธ์ œ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” chicken-egg ๋ฌธ์ œ๋กœ ๊ฐ„์ฃผ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ค‘๊ฐ„ optical flow ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋„คํŠธ์›Œํฌ์™€ ๋ณด๊ฐ„ ํ”„๋ ˆ์ž„์„ ํ•ฉ์„ฑ ํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ๋„คํŠธ์›Œํฌ๋กœ ์ด๋ฃจ์–ด์ง„ ํ•˜๋‚˜์˜ ๋„คํŠธ์›Œํฌ ์Šคํƒ์„ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. The final ๋ณด๊ฐ„ ํ”„๋ ˆ์ž„์„ ์ƒ์„ฑํ•˜๋Š” ๋„คํŠธ์›Œํฌ์˜ ๊ฒฝ์šฐ ์ฒซ ๋ฒˆ์งธ ๋„คํŠธ์›Œํฌ์˜ ์ถœ๋ ฅ์ธ ๋ณด๊ฐ„ ํ”„๋ ˆ์ž„ ์™€ ์ค‘๊ฐ„ optical flow based warped frames์„ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„์„œ ํ”„๋ ˆ์ž„์„ ์ƒ์„ฑํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ตฌ์กฐ์˜ ๊ฐ€์žฅ ํฐ ํŠน์ง•์€ optical flow ๊ณ„์‚ฐ์„ ์œ„ํ•œ ํ•ฉ์„ฑ์— ์˜ํ•œ ๋ถ„์„๋ฒ•๊ณผ CNN ๊ธฐ๋ฐ˜์˜ ๋ถ„์„์— ์˜ํ•œ ํ•ฉ์„ฑ๋ฒ•์„ ๋ชจ๋‘ ์ด์šฉํ•˜์—ฌ ํ•˜๋‚˜์˜ ์ข…ํ•ฉ์ ์ธ framework๋กœ ๊ฒฐํ•ฉํ•˜์˜€๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ œ์•ˆ๋œ ๋„คํŠธ์›Œํฌ๋Š” ๊ธฐ์กด์˜ ๋‘ ๊ฐ€์ง€ ์—ฐ๊ตฌ์ธ optical flow ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„ ํ•ฉ์„ฑ๊ณผ CNN ๊ธฐ๋ฐ˜ ํ•ฉ์„ฑ ํ”„๋ ˆ์ž„ ํ•ฉ์„ฑ๋ฒ•์„ ์ฒ˜์Œ ๊ฒฐํ•ฉ์‹œํ‚จ ๋ฐฉ์‹์ด๋‹ค. ์‹คํ—˜์€ ๋‹ค์–‘ํ•˜๊ณ  ๋ณต์žกํ•œ ๋ฐ์ดํ„ฐ ์…‹์œผ๋กœ ์ด๋ฃจ์–ด์กŒ์œผ๋ฉฐ, ๋ณด๊ฐ„ ํ”„๋ ˆ์ž„ quality ์™€ optical flow ๊ณ„์‚ฐ ์ •ํ™•๋„ ์ธก๋ฉด์—์„œ ๊ธฐ์กด์˜ state-of-art ๋ฐฉ์‹์— ๋น„ํ•ด ์›”๋“ฑํžˆ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ํ›„ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์‹ฌ์ธต ๋น„๋””์˜ค ํ”„๋ ˆ์ž„ ๋ณด๊ฐ„ ๋„คํŠธ์›Œํฌ๋Š” ์ฝ”๋”ฉ ํšจ์œจ ํ–ฅ์ƒ์„ ์œ„ํ•ด ์ตœ์‹  ๋น„๋””์˜ค ์••์ถ• ํ‘œ์ค€์ธ HEVC/H.265์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆ ๋„คํŠธ์›Œํฌ์˜ ํšจ์œจ์„ฑ์„ ์ž…์ฆํ•œ๋‹ค.Abstract i Table of Contents iv List of Tables vii List of Figures viii Chapter 1. Introduction 1 1.1. Hierarchical Motion Estimation of Small Objects 2 1.2. Motion Estimation of a Repetition Pattern Region 4 1.3. Motion-Compensated Frame Interpolation 5 1.4. Video Frame Interpolation with Deep CNN 6 1.5. Outline of the Thesis 7 Chapter 2. Previous Works 9 2.1. Previous Works on Hierarchical Block-Based Motion Estimation 9 2.1.1.โ€‚Maximum a Posterior (MAP) Framework 10 2.1.2.Hierarchical Motion Estimation 12 2.2. Previous Works on Motion Estimation for a Repetition Pattern Region 13 2.3. Previous Works on Motion Compensation 14 2.4. Previous Works on Video Frame Interpolation with Deep CNN 16 Chapter 3. Hierarchical Motion Estimation for Small Objects 19 3.1. Problem Statement 19 3.2. The Alternative Motion Vector of High Cost Pixels 20 3.3. Modified Hierarchical Motion Estimation 23 3.4. Framework of the Proposed Algorithm 24 3.5. Experimental Results 25 3.5.1. Performance Analysis 26 3.5.2. Performance Evaluation 29 Chapter 4. Semi-Global Accurate Motion Estimation for a Repetition Pattern Region 32 4.1. Problem Statement 32 4.2. Objective Function and Constrains 33 4.3. Elector based Voting System 34 4.4. Voter based Voting System 36 4.5. Experimental Results 40 Chapter 5. Multiple Motion Vectors based Motion Compensation 44 5.1. Problem Statement 44 5.2. Adaptive Weighted Multiple Motion Vectors based Motion Compensation 45 5.2.1. One-to-Multiple Motion Vector Projection 45 5.2.2. A Comprehensive Metric as the Extension of Distance 48 5.3. Handling Hole Blocks 49 5.4. Framework of the Proposed Motion Compensated Frame Interpolation 50 5.5. Experimental Results 51 Chapter 6. Video Frame Interpolation with a Stack of Deep CNN 56 6.1. Problem Statement 56 6.2. The Proposed Network for Video Frame Interpolation 57 6.2.1. A Stack of Synthesis Networks 57 6.2.2. Intermediate Optical Flow Derivation Module 60 6.2.3. Warping Operations 62 6.2.4. Training and Loss Function 63 6.2.5. Network Architecture 64 6.2.6. Experimental Results 64 6.2.6.1. Frame Interpolation Evaluation 64 6.2.6.2. Ablation Experiments 77 6.3. Extension for Quality Enhancement for Compressed Videos Task 83 6.4. Extension for Improving the Coding Efficiency of HEVC based Low Bitrate Encoder 88 Chapter 7. Conclusion 94 References 97Docto

    Grid and rotor sides of doubly-fed induction generator-based wind energy conversion system using sliding mode control approach

    Get PDF
    ix, 78 leaves : illustrations (chiefly coloured) ; 29 cmIncludes abstract and appendix.Includes bibliographical references (leaves 65-78).This thesis deals with the analysis, modeling, and control of a Doubly-Fed Induction machine used as a wind turbine generator. A sliding mode control scheme is applied to control the power and Dc-link voltage. Two back-to-back converters are used at rotor and stator sides. At the rotor side, power control is achieved by controlling the rotor current, while at the grid side, an active power transfer is used to model the dc-link voltage. Overall robustness and tracking performance are enhanced to deal with uncertainties due to the structure of the sliding mode control law, compensation combinations, sliding and integral terms. An experimental 2-kw DFIG wind turbine system was used to validate the proposed control system. Based on the results obtained, the proposed system showed good capabilities in tracking and control under various operating conditions as well as robustness to uncertainties

    Radar Technology

    Get PDF
    In this book โ€œRadar Technologyโ€, the chapters are divided into four main topic areas: Topic area 1: โ€œRadar Systemsโ€ consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: โ€œRadar Applicationsโ€ shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: โ€œRadar Functional Chain and Signal Processingโ€ describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: โ€œRadar Subsystems and Componentsโ€ consists of design technology of radar subsystem components like antenna design or waveform design

    Power Electronics Applications in Renewable Energy Systems

    Get PDF
    The renewable generation system is currently experiencing rapid growth in various power grids. The stability and dynamic response issues of power grids are receiving attention due to the increase in power electronics-based renewable energy. The main focus of this Special Issue is to provide solutions for power system planning and operation. Power electronics-based devices can offer new ancillary services to several industrial sectors. In order to fully include the capability of power conversion systems in the network integration of renewable generators, several studies should be carried out, including detailed studies of switching circuits, and comprehensive operating strategies for numerous devices, consisting of large-scale renewable generation clusters

    DC & Hybrid Micro-Grids

    Get PDF
    This book is a printed version of the papers published in the Special Issue โ€œDC & Hybrid Microgridsโ€ of Applied Sciences. This Special Issue, co-organized by the University of Pisa, Italy and ร˜stfold University College in Norway, has collected nine papers and the editorial, from 28 submitted, with authors from Asia, North America and Europe. The published articles provide an overview of the most recent research advances in direct current (DC) and hybrid microgrids, exploiting the opportunities offered by the use of renewable energy sources, battery energy storage systems, power converters, innovative control and energy management strategies

    Fusion of sensor information to measure the total energy of an aircraft and provide information about flight performance and local microclimate

    Get PDF
    The application of using Unmanned Aerial Vehicles (UAVs) to locate thermal updraft currents is a relatively new topic. It was first proposed in 1998 by John Wharington, and, subsequently, several researchers have developed algorithms to search and exploit thermals. However, few people have physically implemented a system and performed field testing. The aim of this project was to develop a low cost system to be carried on a glider to detect thermals effectively. A system was developed from the ground up and consisted of custom hardware and software that was developed specifically for aircraft. Data fusion was performed to estimate the attitude of the aircraft; this was done using a direction cosine (DCM) based method. Altitude and airspeed data were fused by estimating potential and kinetic energy respectively; thus determining the aircraft's total energy. This data was then interpreted to locate thermal activity. The system comprised an Inertial Measurement Unit (IMU), airspeed sensor, barometric altitude sensor, Global Positioning System (GPS), temperature sensor, SD card and a realtime telemetry link. These features allowed the system to determine aircraft position, height, airspeed and air temperature in realtime. A custom-designed radio controlled (RC) glider was constructed from composite materials in addition to a second 3.6 m production glider that was used during flight testing. Sensor calibration was done using a wind tunnel with custom designed apparatus that allowed a complete wing with its pitot tube to be tested in one operation. Flight testing was conducted in the field at several different locations over the course of six months. A total of 25 recorded flights were made during this period. Both thermal soaring and ridge soaring were performed to test the system under varying weather conditions. A telemetry link was developed to transfer data in realtime from the aircraft to a custom ground station. The recorded results were post-processed using Matlab and showed that the system was able to detect thermal updrafts. The sensors used in the system were shown to provide acceptable performance once some calibration had been performed. Sensor noise proved to be problematic, and time was spent alleviating its effects. Results showed that the system was able to measure airspeed to within ยฑ 1 km/h. The standard deviation of the altitude estimate was determined to be 0.94 m. This was deemed to be satisfactory. The system was highly reliable and no faults occurred during operation. In conclusion, the project showed that inexpensive sensors and low power microcontrollers could be used very effectively for the application of detecting thermals

    An aircraft and provide information about flight performance and local microclimate

    Get PDF
    Includes abstract.Includes bibliographical referencesThe application of using Unmanned Aerial Vehicles (UAVs) to locate thermal updraft currentsis a relatively new topic. It was first proposed in 1998 by John Wharington, and, subsequently, several researchers have developed algorithms to search and exploit thermals. However, few people have physically implemented a system and performed field testing. The aim of this project was to develop a low cost system to be carried on a glider to detect thermals effectively. A system was developed from the ground up and consisted of custom hardware and software that was developed specifically for aircraft. Data fusion was performed to estimate the attitude of the aircraft; this was done using a direction cosine (DCM) based method. Altitude and airspeed data were fused by estimating potential and kinetic energy respectively; thus determining the aircraftโ€™s total energy. This data was then interpreted to locate thermal activity. The system comprised an Inertial Measurement Unit (IMU), airspeed sensor, barometric altitude sensor, Global Positioning System (GPS), temperature sensor, SD card and a realtime telemetry link. These features allowed the system to determine aircraft position, height, airspeed and air temperature in realtime. A custom-designed radio controlled (RC) glider was constructed from composite materials in addition to a second 3.6 m production glider that was used during flight testing. Sensor calibration was done using a wind tunnel with custom designed apparatus that allowed a complete wing with its pitot tube to be tested in one operation. Flight testing was conducted in the field at several different locations over the course of six months. A total of 25 recorded flights were made during this period. Both thermal soaring and ridge soaring were performed to test the system under varying weather conditions. A telemetry link was developed to transfer data in realtime from the aircraft to a custom ground station. The recorded results were post-processed using Matlab and showed that the system was able to detect thermal updrafts. The sensors used in the system were shown to provide acceptable performance once some calibration had been performed. Sensor noise proved to be problematic, and time was spent alleviating its effects

    NASA Tech Briefs, December 1989

    Get PDF
    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
    • โ€ฆ
    corecore