12,272 research outputs found

    Generating reversible circuits from higher-order functional programs

    Full text link
    Boolean reversible circuits are boolean circuits made of reversible elementary gates. Despite their constrained form, they can simulate any boolean function. The synthesis and validation of a reversible circuit simulating a given function is a difficult problem. In 1973, Bennett proposed to generate reversible circuits from traces of execution of Turing machines. In this paper, we propose a novel presentation of this approach, adapted to higher-order programs. Starting with a PCF-like language, we use a monadic representation of the trace of execution to turn a regular boolean program into a circuit-generating code. We show that a circuit traced out of a program computes the same boolean function as the original program. This technique has been successfully applied to generate large oracles with the quantum programming language Quipper.Comment: 21 pages. A shorter preprint has been accepted for publication in the Proceedings of Reversible Computation 2016. The final publication is available at http://link.springer.co

    Polynomial-time T-depth Optimization of Clifford+T circuits via Matroid Partitioning

    Full text link
    Most work in quantum circuit optimization has been performed in isolation from the results of quantum fault-tolerance. Here we present a polynomial-time algorithm for optimizing quantum circuits that takes the actual implementation of fault-tolerant logical gates into consideration. Our algorithm re-synthesizes quantum circuits composed of Clifford group and T gates, the latter being typically the most costly gate in fault-tolerant models, e.g., those based on the Steane or surface codes, with the purpose of minimizing both T-count and T-depth. A major feature of the algorithm is the ability to re-synthesize circuits with additional ancillae to reduce T-depth at effectively no cost. The tested benchmarks show up to 65.7% reduction in T-count and up to 87.6% reduction in T-depth without ancillae, or 99.7% reduction in T-depth using ancillae.Comment: Version 2 contains substantial improvements and extensions to the previous version. We describe a new, more robust algorithm and achieve significantly improved experimental result
    corecore