6 research outputs found

    Design of optimal equalizers and precoders for MIMO channels

    Get PDF
    Channel equalization has been extensively studied as a method of combating ISI and ICI for high speed MIMO data communication systems. This dissertation focuses on optimal channel equalization in the presence of non-white observation noises with unknown PSD but bounded power-norm. A worst-case approach to optimal design of channel equalizers leads to an equivalent optimal H-infinity filtering problem for the MIMO communication systems. An explicit design algorithm is derived which not only achieves the zero-forcing (ZF) condition, but also minimizes the RMS error between the transmitted symbols and the received symbols. The second part of this dissertation investigates the design of optimal precoders which minimize the bit error rate (BER) subject to a fixed transmit-power constraint for the multiple antennas downlink communication channels under the perfect reconstruction (PR) condition. The closed form solutions are derived and an efficient design algorithm is proposed. The performance evaluations indicate that the optimal precoder design for multiple antennas communication systems proposed herein is an attractive/reasonable alternative to the existing precoder design techniques

    A virtual MIMO dual-hop architecture based on hybrid spatial modulation

    Get PDF
    International audienceIn this paper, we propose a novel Virtual Multiple-Input-Multiple-Output (VMIMO) architecture based on the concept of Spatial Modulation (SM). Using a dual-hop and Decode-and-Forward protocol, we form a distributed system, called Dual-Hop Hybrid SM (DH-HSM). DH-HSM conveys information from a Source Node (SN) to a Destination Node (DN) via multiple Relay Nodes (RNs). The spatial position of the RNs is exploited for transferring information in addition to, or even without, a conventional symbol. In order to increase the performance of our architecture, while keeping the complexity of the RNs and DN low, we employ linear precoding using Channel State Information (CSI) at the SN. In this way, we form a Receive-Spatial Modulation (R-SM) pattern from the SN to the RNs, which is able to employ a centralized coordinated or a distributed uncoordinated detection algorithm at the RNs. In addition, we focus on the SN and propose two regularized linear precoding methods that employ realistic Imperfect Channel State Information at the Transmitter. The power of each precoder is analyzed theoretically. Using the Bit Error Rate (BER) metric, we evaluate our architecture against the following benchmark systems: 1) single relay; 2) best relay selection; 3) distributed Space Time Block Coding (STBC) VMIMO scheme; and 4) the direct communication link. We show that DH-HSM is able to achieve significant Signal-to-Noise Ratio (SNR) gains, which can be as high as 10.5 dB for a very large scale system setup. In order to verify our simulation results, we provide an analytical framework for the evaluation of the Average Bit Error Probability (ABEP)

    On the energy efficiency of spatial modulation concepts

    Get PDF
    Spatial Modulation (SM) is a Multiple-Input Multiple-Output (MIMO) transmission technique which realizes low complexity implementations in wireless communication systems. Due the transmission principle of SM, only one Radio Frequency (RF) chain is required in the transmitter. Therefore, the complexity of the transmitter is lower compared to the complexity of traditional MIMO schemes, such as Spatial MultipleXing (SMX). In addition, because of the single RF chain configuration of SM, only one Power Amplifier (PA) is required in the transmitter. Hence, SM has the potential to exhibit significant Energy Efficiency (EE) benefits. At the receiver side, due to the SM transmission mechanism, detection is conducted using a low complexity (single stream) Maximum Likelihood (ML) detector. However, despite the use of a single stream detector, SM achieves a multiplexing gain. A point-to-point closed-loop variant of SM is receive space modulation. In receive space modulation, the concept of SMis extended at the receiver side, using linear precoding with Channel State Information at the Transmitter (CSIT). Even though receive space modulation does not preserve the single RF chain configuration of SM, due to the deployed linear precoding, it can be efficiently incorporated in a Space Division Multiple Access (SDMA) or in a Virtual Multiple-Input Multiple-Output (VMIMO) architecture. Inspired by the potentials of SM, the objectives of this thesis are the evaluation of the EE of SM and its extension in different forms of MIMO communication. In particular, a realistic power model for the power consumption of a Base Station (BS) is deployed in order to assess the EE of SM in terms of Mbps/J. By taking into account the whole power supply of a BS and considering a Time Division Multiple Access (TDMA) multiple access scheme, it is shown that SM is significantly more energy efficient compared to the traditional MIMO techniques. In the considered system setup, it is shown that SM is up to 67% more energy efficient compared to the benchmark systems. In addition, the concept of space modulation is researched at the receiver side. Specifically, based on the union bound technique, a framework for the evaluation of the Average Bit Error Probability (ABEP), diversity order, and coding gain of receive space modulation is developed. Because receive space modulation deploys linear precoding with CSIT, two new precoding methods which utilize imperfect CSIT are proposed. Furthermore, in this thesis, receive space modulation is incorporated in the broadcast channel. The derivation of the theoretical ABEP, diversity order, and coding gain of the new broadcast scheme is provided. It is concluded that receive space modulation is able to outperform the corresponding traditional MIMO scheme. Finally, SM, receive space modulation, and relaying are combined in order to form a novel virtual MIMO architecture. It is shown that the new architecture practically eliminates or reduces the problem of the inefficient relaying of the uncoordinated virtual MIMO space modulation architectures. This is undertaken by using precoding in a novel fashion. The evaluation of the new architecture is conducted using simulation and theoretical results

    Spatial diversity in MIMO communication systems with distributed or co-located antennas

    Get PDF
    The use of multiple antennas in wireless communication systems has gained much attention during the last decade. It was shown that such multiple-input multiple-output (MIMO) systems offer huge advantages over single-antenna systems. Typically, quite restrictive assumptions are made concerning the spacing of the individual antenna elements. On the one hand, it is typically assumed that the antenna elements at transmitter and receiver are co-located, i.e., they belong to some sort of antenna array. On the other hand, it is often assumed that the antenna spacings are sufficiently large, so as to justify the assumption of independent fading. In this thesis, the above assumptions are relaxed. In the first part, it is shown that MIMO systems with distributed antennas and MIMO systems with co-located antennas can be treated in a single, unifying framework. In the second part this fact is utilized, in order to develop appropriate transmit power allocation strategies for co-located and distributed MIMO systems. Finally, the third part focuses on specific synchronization problems that are of interest for distributed MIMO systems

    Advanced OFDM systems for terrestrial multimedia links

    Get PDF
    Recently, there has been considerable discussion about new wireless technologies and standards able to achieve high data rates. Due to the recent advances of digital signal processing and Very Large Scale Integration (VLSI) technologies, the initial obstacles encountered for the implementation of Orthogonal Frequency Division Multiplexing (OFDM) modulation schemes, such as massive complex multiplications and high speed memory accesses, do not exist anymore. OFDM offers strong multipath protection due to the insertion of the guard interval; in particular, the OFDM-based DVB-T standard had proved to offer excellent performance for the broadcasting of multimedia streams with bitrates over ten megabits per second in difficult terrestrial propagation channels, for fixed and portable applications. Nevertheless, for mobile scenarios, improving the receiver design is not enough to achieve error-free transmission especially in presence of deep shadow and multipath fading and some modifications of the standard can be envisaged. To address long and medium range applications like live mobile wireless television production, some further modifications are required to adapt the modulated bandwidth and fully exploit channels up to 24MHz wide. For these reasons, an extended OFDM system is proposed that offers variable bandwidth, improved protection to shadow and multipath fading and enhanced robustness thanks to the insertion of deep time-interleaving coupled with a powerful turbo codes concatenated error correction scheme. The system parameters and the receiver architecture have been described in C++ and verified with extensive simulations. In particular, the study of the receiver algorithms was aimed to achieve the optimal tradeoff between performances and complexity. Moreover, the modulation/demodulation chain has been implemented in VHDL and a prototype system has been manufactured. Ongoing field trials are demonstrating the ability of the proposed system to successfully overcome the impairments due to mobile terrestrial channels, like multipath and shadow fading. For short range applications, Time-Division Multiplexing (TDM) is an efficient way to share the radio resource between multiple terminals. The main modulation parameters for a TDM system are discussed and it is shown that the 802.16a TDM OFDM physical layer fulfills the application requirements; some practical examples are given. A pre-distortion method is proposed that exploit the reciprocity of the radio channel to perform a partial channel inversion achieving improved performances with no modifications of existing receivers

    Traitement du signal pour les communications numériques au travers de canaux radio-mobiles

    Get PDF
    This manuscript of ''Habilitation à diriger les Recherches'' (Habilitation to conduct researches) gives me the opportunity to take stock of the last 14 years on my associate professor activities and on my research works in the field of signal processing for digital communications, particularly for radio-mobile communications. The purpose of this signal processing is generally to obtain a robust transmission, despite the passage of digital information through a communication channel disrupted by the mobility between the transmitter and the receiver (Doppler effect), the phenomenon of echoes (multi-path propagation), the addition of noise or interference, or by limitations in bandwidth, in transmitted power or in signal-to-noise ratio. In order to recover properly the digital information, the receiver needs in general to have an accurate knowledge of the channel state. Much of my work has focused on receiver synchronization or more generally on the dynamic estimation of the channel parameters (delays, phases, amplitudes, Doppler shifts, ...). We have developed estimators and studied their performance in asymptotic variance, and have compared them to minimum lower bound (Cramer-rao or Bayesian Cramer Rao bounds). Some other studies have focused only on the recovering of information (''detection'' or ''equalization'' task) by the receiver after channel estimation, or proposed and analyzed emission / reception schemes, reliable for certain scenarios (transmit diversity scheme for flat fading channel, scheme with high energy efficiency, ...).Ce mémoire de HDR est l'occasion de dresser un bilan des 14 dernières années concernant mes activités d'enseignant-chercheur et mes travaux de recherche dans le domaine du traitement du signal pour les communications numériques, et plus particulièrement les communications radio-mobiles. L'objet de ce traitement du signal est globalement l'obtention d'une transmission robuste, malgré le passage de l'information numérique au travers d'un canal de communication perturbé par la mobilité entre l'émetteur et le récepteur (effet Doppler), le phénomène d'échos, l'addition de bruit ou d'interférence, ou encore par des limitations en bande-passante, en puissance transmise ou en rapport-signal à bruit. Afin de restituer au mieux l'information numérique, le récepteur a en général besoin de disposer d'une connaissance précise du canal. Une grande partie de mes travaux s'est intéressé à l'estimation dynamique des paramètres de ce canal (retards, phases, amplitudes, décalages Doppler, ...), et en particulier à la synchronisation du récepteur. Quelques autres travaux se sont intéressés seulement à la restitution de l'information (tâches de ''détection'' ou d' ''égalisation'') par le récepteur une fois le canal estimé, ou à des schémas d'émission / réception spécifiques. La synthèse des travaux commence par une introduction générale décrivant les ''canaux de communications'' et leurs problèmes potentiels, et positionne chacun de mes travaux en ces termes. Une première partie s'intéresse aux techniques de réception pour les signaux à spectre étalé des systèmes d'accès multiple à répartition par codes (CDMA). Ces systèmes large-bande offrent un fort pouvoir de résolution temporelle et des degrés de liberté, que nous avons exploités pour étudier l'égalisation et la synchronisation (de retard et de phase) en présence de trajets multiples et d'utilisateurs multiples. La première partie regroupe aussi d'autres schémas d'émission/réception, proposés pour leur robustesse dans différents scénarios (schéma à diversité pour canaux à évanouissement plats, schéma à forte efficacité énergétique, ...). La seconde partie est consacrée à l'estimation dynamique Bayésienne des paramètres du canal. On suppose ici qu'une partie des paramètres à estimer exhibe des variations temporelles aléatoires selon une certaine loi à priori. Nous proposons d'abord des estimateurs et des bornes minimales d'estimation pour des modèles de transmission relativement complexes, en raison de la distorsion temporelle due à la forte mobilité en modulation multi-porteuse (OFDM), ou de la présence de plusieurs paramètres à estimer conjointement, ou encore de non linéarités dans les modèles. Nous nous focalisons ensuite sur le problème d'estimation des amplitudes complexes des trajets d'un canal à évolution lente (à 1 ou plusieurs bonds). Nous proposons des estimateurs récursifs (dénommés CATL, pour ''Complex Amplitude Tracking Loop'') à structure imposée inspirée par les boucles à verrouillage de phase numériques, de performance asymptotiques proches des bornes minimales. Les formules analytiques approchées de performances asymptotiques et de réglages de ces estimateurs sont établies sous forme de simples fonctions des paramètres physiques (spectre Doppler, retards, niveau de bruit). Puis étant donné les liens établis entre ces estimateurs CATL et certains filtres de Kalman (construits pour des modèles d'état de type marche aléatoire intégrée), les formules approchées de performances asymptotiques et de réglage de ces filtres de Kalman sont aussi dérivées
    corecore