17,384 research outputs found

    A Critical Review of "Automatic Patch Generation Learned from Human-Written Patches": Essay on the Problem Statement and the Evaluation of Automatic Software Repair

    Get PDF
    At ICSE'2013, there was the first session ever dedicated to automatic program repair. In this session, Kim et al. presented PAR, a novel template-based approach for fixing Java bugs. We strongly disagree with key points of this paper. Our critical review has two goals. First, we aim at explaining why we disagree with Kim and colleagues and why the reasons behind this disagreement are important for research on automatic software repair in general. Second, we aim at contributing to the field with a clarification of the essential ideas behind automatic software repair. In particular we discuss the main evaluation criteria of automatic software repair: understandability, correctness and completeness. We show that depending on how one sets up the repair scenario, the evaluation goals may be contradictory. Eventually, we discuss the nature of fix acceptability and its relation to the notion of software correctness.Comment: ICSE 2014, India (2014

    Validation of Ultrahigh Dependability for Software-Based Systems

    Get PDF
    Modern society depends on computers for a number of critical tasks in which failure can have very high costs. As a consequence, high levels of dependability (reliability, safety, etc.) are required from such computers, including their software. Whenever a quantitative approach to risk is adopted, these requirements must be stated in quantitative terms, and a rigorous demonstration of their being attained is necessary. For software used in the most critical roles, such demonstrations are not usually supplied. The fact is that the dependability requirements often lie near the limit of the current state of the art, or beyond, in terms not only of the ability to satisfy them, but also, and more often, of the ability to demonstrate that they are satisfied in the individual operational products (validation). We discuss reasons why such demonstrations cannot usually be provided with the means available: reliability growth models, testing with stable reliability, structural dependability modelling, as well as more informal arguments based on good engineering practice. We state some rigorous arguments about the limits of what can be validated with each of such means. Combining evidence from these different sources would seem to raise the levels that can be validated; yet this improvement is not such as to solve the problem. It appears that engineering practice must take into account the fact that no solution exists, at present, for the validation of ultra-high dependability in systems relying on complex software

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures
    corecore