406 research outputs found

    Multi-branch Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation

    Get PDF
    In this paper, we present an automated approach for segmenting multiple sclerosis (MS) lesions from multi-modal brain magnetic resonance images. Our method is based on a deep end-to-end 2D convolutional neural network (CNN) for slice-based segmentation of 3D volumetric data. The proposed CNN includes a multi-branch downsampling path, which enables the network to encode information from multiple modalities separately. Multi-scale feature fusion blocks are proposed to combine feature maps from different modalities at different stages of the network. Then, multi-scale feature upsampling blocks are introduced to upsize combined feature maps to leverage information from lesion shape and location. We trained and tested the proposed model using orthogonal plane orientations of each 3D modality to exploit the contextual information in all directions. The proposed pipeline is evaluated on two different datasets: a private dataset including 37 MS patients and a publicly available dataset known as the ISBI 2015 longitudinal MS lesion segmentation challenge dataset, consisting of 14 MS patients. Considering the ISBI challenge, at the time of submission, our method was amongst the top performing solutions. On the private dataset, using the same array of performance metrics as in the ISBI challenge, the proposed approach shows high improvements in MS lesion segmentation compared with other publicly available tools.Comment: This paper has been accepted for publication in NeuroImag

    Topology-Aware Loss for Aorta and Great Vessel Segmentation in Computed Tomography Images

    Full text link
    Segmentation networks are not explicitly imposed to learn global invariants of an image, such as the shape of an object and the geometry between multiple objects, when they are trained with a standard loss function. On the other hand, incorporating such invariants into network training may help improve performance for various segmentation tasks when they are the intrinsic characteristics of the objects to be segmented. One example is segmentation of aorta and great vessels in computed tomography (CT) images where vessels are found in a particular geometry in the body due to the human anatomy and they mostly seem as round objects on a 2D CT image. This paper addresses this issue by introducing a new topology-aware loss function that penalizes topology dissimilarities between the ground truth and prediction through persistent homology. Different from the previously suggested segmentation network designs, which apply the threshold filtration on a likelihood function of the prediction map and the Betti numbers of the ground truth, this paper proposes to apply the Vietoris-Rips filtration to obtain persistence diagrams of both ground truth and prediction maps and calculate the dissimilarity with the Wasserstein distance between the corresponding persistence diagrams. The use of this filtration has advantage of modeling shape and geometry at the same time, which may not happen when the threshold filtration is applied. Our experiments on 4327 CT images of 24 subjects reveal that the proposed topology-aware loss function leads to better results than its counterparts, indicating the effectiveness of this use
    • …
    corecore