81,420 research outputs found

    Impulsive choice in hippocampal but not orbitofrontal cortex-lesioned rats on a nonspatial decision-making maze task

    Get PDF
    Orbitofrontal cortical (OFC) and hippocampal (HPC) lesions in primates and rodents have been associated with impulsive behaviour. We showed previously that OFC- or HPC-lesioned rats chose the immediate low-reward (LR) option in preference to the delayed high-reward (HR) option, where LR and HR were associated with different spatial responses in a uniform grey T-maze. We now report that on a novel nonspatial T-maze task in which the HR and LR options are associated with patterned goal arms (black-and-white stripes vs. gray), OFC-lesioned rats did not show impulsive behaviour, choosing the delayed HR option, and were indistinguishable from controls. In contrast, HPC-lesioned rats exhibited impulsive choice in the nonspatial decision-making task, although they chose the HR option on the majority of trials when there was a 10-s delay associated with both goal arms. The previously reported impairment in OFC-lesioned rats on the spatial version of the intertemporal choice task is unlikely to reflect a general problem with spatial learning, because OFC lesions were without effect on acquisition of the standard reference memory water-maze task and spatial working memory performance (nonmatching-to-place) on the T-maze. The differential effect of OFC lesions on the two versions of the intertemporal choice task may be explained instead in terms of the putative role of OFC in using associative information to represent expected outcomes and generate predictions. The impulsivity in HPC-lesioned rats may reflect impaired temporal information processing, and emphasizes a role for the hippocampus beyond the spatial domain

    Identifying reliable traits across laboratory mouse exploration arenas: A meta-analysis

    Get PDF
    This study is a meta-analysis of 367 mice from a collection of behaviour neuroscience and behaviour genetic studies run in the same lab in Zurich, Switzerland. We employed correlation-based statistics to confirm and quantify consistencies in behaviour across the testing environments. All 367 mice ran exactly the same behavioural arenas: the light/dark box, the null maze, the open field arena, an emergence task and finally an object exploration task. We analysed consistency of three movement types across those arenas (resting, scanning, progressing), and their relative preference for three zones of the arenas (home, transition, exploration). Results were that 5/6 measures showed strong individual-differences consistency across the tests. Mean inter-arena correlations for these five measures ranged from +.12 to +.53. Unrotated principal component factor analysis (UPCFA) and Cronbach’s alpha measures showed these traits to be reliable and substantial (32-63% of variance across the five arenas). UPCFA loadings then indicate which tasks give the best information about these cross-task traits. One measure (that of time spent in “intermediate” zones) was not reliable across arenas. Conclusions centre on the use of individual differences research and behavioural batteries to revise understandings of what measures in one task predict for behaviour in others. Developing better behaviour measures also makes sound scientific and ethical sense

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    Prioritized Sweeping Neural DynaQ with Multiple Predecessors, and Hippocampal Replays

    Full text link
    During sleep and awake rest, the hippocampus replays sequences of place cells that have been activated during prior experiences. These have been interpreted as a memory consolidation process, but recent results suggest a possible interpretation in terms of reinforcement learning. The Dyna reinforcement learning algorithms use off-line replays to improve learning. Under limited replay budget, a prioritized sweeping approach, which requires a model of the transitions to the predecessors, can be used to improve performance. We investigate whether such algorithms can explain the experimentally observed replays. We propose a neural network version of prioritized sweeping Q-learning, for which we developed a growing multiple expert algorithm, able to cope with multiple predecessors. The resulting architecture is able to improve the learning of simulated agents confronted to a navigation task. We predict that, in animals, learning the world model should occur during rest periods, and that the corresponding replays should be shuffled.Comment: Living Machines 2018 (Paris, France
    corecore