254 research outputs found

    Digitalization of Retail Stores using Bluetooth Low Energy Beacons

    Get PDF
    This thesis explores the domains of retail stores and the Internet of Things, with a focus on Bluetooth Low Energy beacons. It investigates how one can use the technology to improve physical stores, for the benefit of both the store and the customers. It does this by going through literature and information from academia and the relevant industry. Additionally, an interview with an expert in the retail domain is conducted, and a survey consisting of a series of interviews and questionnaire with what can be considered experts in the IT domain. A prototype app called Stass is developed, the app demonstrates some of the usages of the technology and is also used for evaluating the performance of the beacons.Masteroppgave i informasjonsvitenskapINFO39

    Let's track! strategies to establish active people tracking in workplaces

    Get PDF
    The action research component is conducted by developing a system that delivers insights into teamwork dynamics, as revealed by tracking the social network interactions that occur within collaborative work environments. I constructed a working prototype that utilised an indoor people tracking system that captures people's movements as they operate within their workspace. It is capable of simultaneously monitoring the progress of multiple cohabitating project teams. Focusing on providing context specific insights, I designed a flexible behaviour model that constructed customised social networks to extract interactions of interest from the tracked data. The visually rich analysis reporting that was layered with contextual cues enabled quick cognition by the intended viewer. The targeted user covers all levels of the organisation from project collaborators to the support personnel and upper management. With this setup, everyone can participate in a data-supported reflective learning process. The original contribution of my research is two-fold. Firstly, the people tracking system and analytics I developed demonstrated the technical capability to provide real time insights to workspace design, project management and human resource management applications. Secondly, through reference to my three case studies, I argue that a user-centric approach is critical for the successful integration and adaptation of people tracking systems and analytics into real world workplace practices

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot

    Proceedings of the 3rd IUI Workshop on Interacting with Smart Objects

    Get PDF
    These are the Proceedings of the 3rd IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects

    Security and Privacy in Bluetooth Low Energy

    Get PDF

    Information Leakage Attacks and Countermeasures

    Get PDF
    The scientific community has been consistently working on the pervasive problem of information leakage, uncovering numerous attack vectors, and proposing various countermeasures. Despite these efforts, leakage incidents remain prevalent, as the complexity of systems and protocols increases, and sophisticated modeling methods become more accessible to adversaries. This work studies how information leakages manifest in and impact interconnected systems and their users. We first focus on online communications and investigate leakages in the Transport Layer Security protocol (TLS). Using modern machine learning models, we show that an eavesdropping adversary can efficiently exploit meta-information (e.g., packet size) not protected by the TLS’ encryption to launch fingerprinting attacks at an unprecedented scale even under non-optimal conditions. We then turn our attention to ultrasonic communications, and discuss their security shortcomings and how adversaries could exploit them to compromise anonymity network users (even though they aim to offer a greater level of privacy compared to TLS). Following up on these, we delve into physical layer leakages that concern a wide array of (networked) systems such as servers, embedded nodes, Tor relays, and hardware cryptocurrency wallets. We revisit location-based side-channel attacks and develop an exploitation neural network. Our model demonstrates the capabilities of a modern adversary but also presents an inexpensive tool to be used by auditors for detecting such leakages early on during the development cycle. Subsequently, we investigate techniques that further minimize the impact of leakages found in production components. Our proposed system design distributes both the custody of secrets and the cryptographic operation execution across several components, thus making the exploitation of leaks difficult
    • …
    corecore