46,675 research outputs found

    Better client OFF time prediction to improve performance in web information systems

    Get PDF

    The Network Effects of Prefetching

    Full text link
    Prefetching has been shown to be an effective technique for reducing user perceived latency in distributed systems. In this paper we show that even when prefetching adds no extra traffic to the network, it can have serious negative performance effects. Straightforward approaches to prefetching increase the burstiness of individual sources, leading to increased average queue sizes in network switches. However, we also show that applications can avoid the undesirable queueing effects of prefetching. In fact, we show that applications employing prefetching can significantly improve network performance, to a level much better than that obtained without any prefetching at all. This is because prefetching offers increased opportunities for traffic shaping that are not available in the absence of prefetching. Using a simple transport rate control mechanism, a prefetching application can modify its behavior from a distinctly ON/OFF entity to one whose data transfer rate changes less abruptly, while still delivering all data in advance of the user's actual requests

    PRETZEL: Opening the Black Box of Machine Learning Prediction Serving Systems

    Full text link
    Machine Learning models are often composed of pipelines of transformations. While this design allows to efficiently execute single model components at training time, prediction serving has different requirements such as low latency, high throughput and graceful performance degradation under heavy load. Current prediction serving systems consider models as black boxes, whereby prediction-time-specific optimizations are ignored in favor of ease of deployment. In this paper, we present PRETZEL, a prediction serving system introducing a novel white box architecture enabling both end-to-end and multi-model optimizations. Using production-like model pipelines, our experiments show that PRETZEL is able to introduce performance improvements over different dimensions; compared to state-of-the-art approaches PRETZEL is on average able to reduce 99th percentile latency by 5.5x while reducing memory footprint by 25x, and increasing throughput by 4.7x.Comment: 16 pages, 14 figures, 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI), 201

    Reputation Agent: Prompting Fair Reviews in Gig Markets

    Full text link
    Our study presents a new tool, Reputation Agent, to promote fairer reviews from requesters (employers or customers) on gig markets. Unfair reviews, created when requesters consider factors outside of a worker's control, are known to plague gig workers and can result in lost job opportunities and even termination from the marketplace. Our tool leverages machine learning to implement an intelligent interface that: (1) uses deep learning to automatically detect when an individual has included unfair factors into her review (factors outside the worker's control per the policies of the market); and (2) prompts the individual to reconsider her review if she has incorporated unfair factors. To study the effectiveness of Reputation Agent, we conducted a controlled experiment over different gig markets. Our experiment illustrates that across markets, Reputation Agent, in contrast with traditional approaches, motivates requesters to review gig workers' performance more fairly. We discuss how tools that bring more transparency to employers about the policies of a gig market can help build empathy thus resulting in reasoned discussions around potential injustices towards workers generated by these interfaces. Our vision is that with tools that promote truth and transparency we can bring fairer treatment to gig workers.Comment: 12 pages, 5 figures, The Web Conference 2020, ACM WWW 202

    Arm Mbed – AWS IoT System Integration [Open access]

    Get PDF
    This project explores the different Internet of Things (IoT) architectures and the available platforms to define a general IoT Architecture to connect Arm microcontrollers to Amazon Web Services. In order to accommodate the wide range of IoT applications, the architecture was defined with different routes that an Arm microcontroller can take to reach AWS. Once this Architecture was defined, a performance analysis on the different routes was performed in terms of communication speed and bandwidth. Finally, a Smart Home use case scenario is implemented to show the basic functionalities of an IoT system such as sending data to the device and data storage in the Cloud. Furthermore, a Cloud ML algorithm is triggered in real time by the Smart Home to receive a prediction of the current Comfort Level in the room

    Self-* overload control for distributed web systems

    Full text link
    Unexpected increases in demand and most of all flash crowds are considered the bane of every web application as they may cause intolerable delays or even service unavailability. Proper quality of service policies must guarantee rapid reactivity and responsiveness even in such critical situations. Previous solutions fail to meet common performance requirements when the system has to face sudden and unpredictable surges of traffic. Indeed they often rely on a proper setting of key parameters which requires laborious manual tuning, preventing a fast adaptation of the control policies. We contribute an original Self-* Overload Control (SOC) policy. This allows the system to self-configure a dynamic constraint on the rate of admitted sessions in order to respect service level agreements and maximize the resource utilization at the same time. Our policy does not require any prior information on the incoming traffic or manual configuration of key parameters. We ran extensive simulations under a wide range of operating conditions, showing that SOC rapidly adapts to time varying traffic and self-optimizes the resource utilization. It admits as many new sessions as possible in observance of the agreements, even under intense workload variations. We compared our algorithm to previously proposed approaches highlighting a more stable behavior and a better performance.Comment: The full version of this paper, titled "Self-* through self-learning: overload control for distributed web systems", has been published on Computer Networks, Elsevier. The simulator used for the evaluation of the proposed algorithm is available for download at the address: http://www.dsi.uniroma1.it/~novella/qos_web
    • …
    corecore