516 research outputs found

    Time-Energy Tradeoffs for Evacuation by Two Robots in the Wireless Model

    Full text link
    Two robots stand at the origin of the infinite line and are tasked with searching collaboratively for an exit at an unknown location on the line. They can travel at maximum speed bb and can change speed or direction at any time. The two robots can communicate with each other at any distance and at any time. The task is completed when the last robot arrives at the exit and evacuates. We study time-energy tradeoffs for the above evacuation problem. The evacuation time is the time it takes the last robot to reach the exit. The energy it takes for a robot to travel a distance xx at speed ss is measured as xs2xs^2. The total and makespan evacuation energies are respectively the sum and maximum of the energy consumption of the two robots while executing the evacuation algorithm. Assuming that the maximum speed is bb, and the evacuation time is at most cdcd, where dd is the distance of the exit from the origin, we study the problem of minimizing the total energy consumption of the robots. We prove that the problem is solvable only for bc3bc \geq 3. For the case bc=3bc=3, we give an optimal algorithm, and give upper bounds on the energy for the case bc>3bc>3. We also consider the problem of minimizing the evacuation time when the available energy is bounded by Δ\Delta. Surprisingly, when Δ\Delta is a constant, independent of the distance dd of the exit from the origin, we prove that evacuation is possible in time O(d3/2logd)O(d^{3/2}\log d), and this is optimal up to a logarithmic factor. When Δ\Delta is linear in dd, we give upper bounds on the evacuation time.Comment: This is the full version of the paper with the same title which will appear in the proceedings of the 26th International Colloquium on Structural Information and Communication Complexity (SIROCCO'19) L'Aquila, Italy during July 1-4, 201

    Rendezvous on a Line by Location-Aware Robots Despite the Presence of Byzantine Faults

    Full text link
    A set of mobile robots is placed at points of an infinite line. The robots are equipped with GPS devices and they may communicate their positions on the line to a central authority. The collection contains an unknown subset of "spies", i.e., byzantine robots, which are indistinguishable from the non-faulty ones. The set of the non-faulty robots need to rendezvous in the shortest possible time in order to perform some task, while the byzantine robots may try to delay their rendezvous for as long as possible. The problem facing a central authority is to determine trajectories for all robots so as to minimize the time until the non-faulty robots have rendezvoused. The trajectories must be determined without knowledge of which robots are faulty. Our goal is to minimize the competitive ratio between the time required to achieve the first rendezvous of the non-faulty robots and the time required for such a rendezvous to occur under the assumption that the faulty robots are known at the start. We provide a bounded competitive ratio algorithm, where the central authority is informed only of the set of initial robot positions, without knowing which ones or how many of them are faulty. When an upper bound on the number of byzantine robots is known to the central authority, we provide algorithms with better competitive ratios. In some instances we are able to show these algorithms are optimal

    Evacuation from a Disk for Robots with Asymmetric Communication

    Get PDF
    We consider evacuation of two robots from an Exit placed at an unknown location on the perimeter of a unit (radius) disk. The robots can move with max speed 1 and start at the center of the disk at the same time. We consider a new communication model, known as the SR model, in which the robots have communication faults as follows: one of the robots is a Sender and can only send wirelessly at any distance, while the other is a Receiver in that it can only receive wirelessly from any distance. The communication status of each robot is known to the other robot. In addition, both robots can exchange messages when they are co-located, which is known as Face-to-Face (F2F) model. There have been several studies in the literature concerning the evacuation time when both robots may employ either F2F or Wireless (WiFi) communication. The SR communication model diverges from these two in that the two robots themselves have differing communication capabilities. We study the evacuation time, namely the time it takes until the last robot reaches the Exit, and show that the evacuation time in the SR model is strictly between the F2F and the WiFi models. The main part of our technical contribution is also an evacuation algorithm in which two cooperating robots accomplish the task in worst-case time at most ?+2. Interesting features of the proposed algorithm are the asymmetry inherent in the resulting trajectories, as well as that the robots do not move at full speed for the entire duration of their trajectories

    Group Evacuation on a Line by Agents with Different Communication Abilities

    Get PDF
    We consider evacuation of a group of n ? 2 autonomous mobile agents (or robots) from an unknown exit on an infinite line. The agents are initially placed at the origin of the line and can move with any speed up to the maximum speed 1 in any direction they wish and they all can communicate when they are co-located. However, the agents have different wireless communication abilities: while some are fully wireless and can send and receive messages at any distance, a subset of the agents are senders, they can only transmit messages wirelessly, and the rest are receivers, they can only receive messages wirelessly. The agents start at the same time and their communication abilities are known to each other from the start. Starting at the origin of the line, the goal of the agents is to collectively find a target/exit at an unknown location on the line while minimizing the evacuation time, defined as the time when the last agent reaches the target. We investigate the impact of such a mixed communication model on evacuation time on an infinite line for a group of cooperating agents. In particular, we provide evacuation algorithms and analyze the resulting competitive ratio (CR) of the evacuation time for such a group of agents. If the group has two agents of two different types, we give an optimal evacuation algorithm with competitive ratio CR = 3+2?2. If there is a single sender or fully wireless agent, and multiple receivers we prove that CR ? [2+?5,5], and if there are multiple senders and a single receiver or fully wireless agent, we show that CR ? [3,5.681319]. Any group consisting of only senders or only receivers requires competitive ratio 9, and any other combination of agents has competitive ratio 3

    Line Search for an Oblivious Moving Target

    Get PDF
    Consider search on an infinite line involving an autonomous robot starting at the origin of the line and an oblivious moving target at initial distance d1d \geq 1 from it. The robot can change direction and move anywhere on the line with constant maximum speed 11 while the target is also moving on the line with constant speed v>0v>0 but is unable to change its speed or direction. The goal is for the robot to catch up to the target in as little time as possible. The classic case where v=0v=0 and the target's initial distance dd is unknown to the robot is the well-studied ``cow-path problem''. Alpert and Gal gave an optimal algorithm for the case where a target with unknown initial distance dd is moving away from the robot with a known speed v<1v<1. In this paper we design and analyze search algorithms for the remaining possible knowledge situations, namely, when dd and vv are known, when vv is known but dd is unknown, when dd is known but vv is unknown, and when both vv and dd are unknown. Furthermore, for each of these knowledge models we consider separately the case where the target is moving away from the origin and the case where it is moving toward the origin. We design algorithms and analyze competitive ratios for all eight cases above. The resulting competitive ratios are shown to be optimal when the target is moving towards the origin as well as when vv is known and the target is moving away from the origin

    Line Search for an Oblivious Moving Target

    Get PDF

    Exploring Graphs with Time Constraints by Unreliable Collections of Mobile Robots

    Get PDF
    A graph environment must be explored by a collection of mobile robots. Some of the robots, a priori unknown, may turn out to be unreliable. The graph is weighted and each node is assigned a deadline. The exploration is successful if each node of the graph is visited before its deadline by a reliable robot. The edge weight corresponds to the time needed by a robot to traverse the edge. Given the number of robots which may crash, is it possible to design an algorithm, which will always guarantee the exploration, independently of the choice of the subset of unreliable robots by the adversary? We find the optimal time, during which the graph may be explored. Our approach permits to find the maximal number of robots, which may turn out to be unreliable, and the graph is still guaranteed to be explored. We concentrate on line graphs and rings, for which we give positive results. We start with the case of the collections involving only reliable robots. We give algorithms finding optimal times needed for exploration when the robots are assigned to fixed initial positions as well as when such starting positions may be determined by the algorithm. We extend our consideration to the case when some number of robots may be unreliable. Our most surprising result is that solving the line exploration problem with robots at given positions, which may involve crash-faulty ones, is NP-hard. The same problem has polynomial solutions for a ring and for the case when the initial robots' positions on the line are arbitrary. The exploration problem is shown to be NP-hard for star graphs, even when the team consists of only two reliable robots

    God Save the Queen

    Get PDF
    Queen Daniela of Sardinia is asleep at the center of a round room at the top of the tower in her castle. She is accompanied by her faithful servant, Eva. Suddenly, they are awakened by cries of "Fire". The room is pitch black and they are disoriented. There is exactly one exit from the room somewhere along its boundary. They must find it as quickly as possible in order to save the life of the queen. It is known that with two people searching while moving at maximum speed 1 anywhere in the room, the room can be evacuated (i.e., with both people exiting) in 1 + (2 pi)/3 + sqrt{3} ~~ 4.8264 time units and this is optimal [Czyzowicz et al., DISC\u2714], assuming that the first person to find the exit can directly guide the other person to the exit using her voice. Somewhat surprisingly, in this paper we show that if the goal is to save the queen (possibly leaving Eva behind to die in the fire) there is a slightly better strategy. We prove that this "priority" version of evacuation can be solved in time at most 4.81854. Furthermore, we show that any strategy for saving the queen requires time at least 3 + pi/6 + sqrt{3}/2 ~~ 4.3896 in the worst case. If one or both of the queen\u27s other servants (Biddy and/or Lili) are with her, we show that the time bounds can be improved to 3.8327 for two servants, and 3.3738 for three servants. Finally we show lower bounds for these cases of 3.6307 (two servants) and 3.2017 (three servants). The case of n >= 4 is the subject of an independent study by Queen Daniela\u27s Royal Scientific Team
    corecore