5,434 research outputs found

    Multilingual Language Processing From Bytes

    Full text link
    We describe an LSTM-based model which we call Byte-to-Span (BTS) that reads text as bytes and outputs span annotations of the form [start, length, label] where start positions, lengths, and labels are separate entries in our vocabulary. Because we operate directly on unicode bytes rather than language-specific words or characters, we can analyze text in many languages with a single model. Due to the small vocabulary size, these multilingual models are very compact, but produce results similar to or better than the state-of- the-art in Part-of-Speech tagging and Named Entity Recognition that use only the provided training datasets (no external data sources). Our models are learning "from scratch" in that they do not rely on any elements of the standard pipeline in Natural Language Processing (including tokenization), and thus can run in standalone fashion on raw text

    Named Entity Recognition Only from Word Embeddings

    Full text link
    Deep neural network models have helped named entity (NE) recognition achieve amazing performance without handcrafting features. However, existing systems require large amounts of human annotated training data. Efforts have been made to replace human annotations with external knowledge (e.g., NE dictionary, part-of-speech tags), while it is another challenge to obtain such effective resources. In this work, we propose a fully unsupervised NE recognition model which only needs to take informative clues from pre-trained word embeddings. We first apply Gaussian Hidden Markov Model and Deep Autoencoding Gaussian Mixture Model on word embeddings for entity span detection and type prediction, and then further design an instance selector based on reinforcement learning to distinguish positive sentences from noisy sentences and refine these coarse-grained annotations through neural networks. Extensive experiments on CoNLL benchmark datasets demonstrate that our proposed light NE recognition model achieves remarkable performance without using any annotated lexicon or corpus.Comment: Accepted by EMNLP202

    BOND: BERT-Assisted Open-Domain Named Entity Recognition with Distant Supervision

    Full text link
    We study the open-domain named entity recognition (NER) problem under distant supervision. The distant supervision, though does not require large amounts of manual annotations, yields highly incomplete and noisy distant labels via external knowledge bases. To address this challenge, we propose a new computational framework -- BOND, which leverages the power of pre-trained language models (e.g., BERT and RoBERTa) to improve the prediction performance of NER models. Specifically, we propose a two-stage training algorithm: In the first stage, we adapt the pre-trained language model to the NER tasks using the distant labels, which can significantly improve the recall and precision; In the second stage, we drop the distant labels, and propose a self-training approach to further improve the model performance. Thorough experiments on 5 benchmark datasets demonstrate the superiority of BOND over existing distantly supervised NER methods. The code and distantly labeled data have been released in https://github.com/cliang1453/BOND.Comment: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '20

    Complete Semantics to empower Touristic Service Providers

    Full text link
    The tourism industry has a significant impact on the world's economy, contributes 10.2% of the world's gross domestic product in 2016. It becomes a very competitive industry, where having a strong online presence is an essential aspect for business success. To achieve this goal, the proper usage of latest Web technologies, particularly schema.org annotations is crucial. In this paper, we present our effort to improve the online visibility of touristic service providers in the region of Tyrol, Austria, by creating and deploying a substantial amount of semantic annotations according to schema.org, a widely used vocabulary for structured data on the Web. We started our work from Tourismusverband (TVB) Mayrhofen-Hippach and all touristic service providers in the Mayrhofen-Hippach region and applied the same approach to other TVBs and regions, as well as other use cases. The rationale for doing this is straightforward. Having schema.org annotations enables search engines to understand the content better, and provide better results for end users, as well as enables various intelligent applications to utilize them. As a direct consequence, the region of Tyrol and its touristic service increase their online visibility and decrease the dependency on intermediaries, i.e. Online Travel Agency (OTA).Comment: 18 pages, 6 figure
    • …
    corecore