56,006 research outputs found

    Best Response Games on Regular Graphs

    Full text link
    With the growth of the internet it is becoming increasingly important to understand how the behaviour of players is affected by the topology of the network interconnecting them. Many models which involve networks of interacting players have been proposed and best response games are amongst the simplest. In best response games each vertex simultaneously updates to employ the best response to their current surroundings. We concentrate upon trying to understand the dynamics of best response games on regular graphs with many strategies. When more than two strategies are present highly complex dynamics can ensue. We focus upon trying to understand exactly how best response games on regular graphs sample from the space of possible cellular automata. To understand this issue we investigate convex divisions in high dimensional space and we prove that almost every division of k−1k-1 dimensional space into kk convex regions includes a single point where all regions meet. We then find connections between the convex geometry of best response games and the theory of alternating circuits on graphs. Exploiting these unexpected connections allows us to gain an interesting answer to our question of when cellular automata are best response games

    On Rational Delegations in Liquid Democracy

    Get PDF
    Liquid democracy is a proxy voting method where proxies are delegable. We propose and study a game-theoretic model of liquid democracy to address the following question: when is it rational for a voter to delegate her vote? We study the existence of pure-strategy Nash equilibria in this model, and how group accuracy is affected by them. We complement these theoretical results by means of agent-based simulations to study the effects of delegations on group's accuracy on variously structured social networks.Comment: 17 pages, 3 figures. This paper (without Appendix) appears in the proceedings of AAAI'1

    Evolution of Coordination in Social Networks: A Numerical Study

    Get PDF
    Coordination games are important to explain efficient and desirable social behavior. Here we study these games by extensive numerical simulation on networked social structures using an evolutionary approach. We show that local network effects may promote selection of efficient equilibria in both pure and general coordination games and may explain social polarization. These results are put into perspective with respect to known theoretical results. The main insight we obtain is that clustering, and especially community structure in social networks has a positive role in promoting socially efficient outcomes.Comment: preprint submitted to IJMP

    The Max-Distance Network Creation Game on General Host Graphs

    Full text link
    In this paper we study a generalization of the classic \emph{network creation game} in the scenario in which the nn players sit on a given arbitrary \emph{host graph}, which constrains the set of edges a player can activate at a cost of α≄0\alpha \geq 0 each. This finds its motivations in the physical limitations one can have in constructing links in practice, and it has been studied in the past only when the routing cost component of a player is given by the sum of distances to all the other nodes. Here, we focus on another popular routing cost, namely that which takes into account for each player its \emph{maximum} distance to any other player. For this version of the game, we first analyze some of its computational and dynamic aspects, and then we address the problem of understanding the structure of associated pure Nash equilibria. In this respect, we show that the corresponding price of anarchy (PoA) is fairly bad, even for several basic classes of host graphs. More precisely, we first exhibit a lower bound of Ω(n/(1+α))\Omega (\sqrt{ n / (1+\alpha)}) for any α=o(n)\alpha = o(n). Notice that this implies a counter-intuitive lower bound of Ω(n)\Omega(\sqrt{n}) for very small values of α\alpha (i.e., edges can be activated almost for free). Then, we show that when the host graph is restricted to be either kk-regular (for any constant k≄3k \geq 3), or a 2-dimensional grid, the PoA is still Ω(1+min⁥{α,nα})\Omega(1+\min\{\alpha, \frac{n}{\alpha}\}), which is proven to be tight for α=Ω(n)\alpha=\Omega(\sqrt{n}). On the positive side, if α≄n\alpha \geq n, we show the PoA is O(1)O(1). Finally, in the case in which the host graph is very sparse (i.e., ∣E(H)∣=n−1+k|E(H)|=n-1+k, with k=O(1)k=O(1)), we prove that the PoA is O(1)O(1), for any α\alpha.Comment: 17 pages, 4 figure

    Non-Zero Sum Games for Reactive Synthesis

    Get PDF
    In this invited contribution, we summarize new solution concepts useful for the synthesis of reactive systems that we have introduced in several recent publications. These solution concepts are developed in the context of non-zero sum games played on graphs. They are part of the contributions obtained in the inVEST project funded by the European Research Council.Comment: LATA'16 invited pape

    Statistical Mechanics of maximal independent sets

    Full text link
    The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation
    • 

    corecore