22 research outputs found

    An Ontology-Based Interpretable Fuzzy Decision Support System for Diabetes Diagnosis

    Get PDF
    Diabetes is a serious chronic disease. The importance of clinical decision support systems (CDSSs) to diagnose diabetes has led to extensive research efforts to improve the accuracy, applicability, interpretability, and interoperability of these systems. However, this problem continues to require optimization. Fuzzy rule-based systems are suitable for the medical domain, where interpretability is a main concern. The medical domain is data-intensive, and using electronic health record data to build the FRBS knowledge base and fuzzy sets is critical. Multiple variables are frequently required to determine a correct and personalized diagnosis, which usually makes it difficult to arrive at accurate and timely decisions. In this paper, we propose and implement a new semantically interpretable FRBS framework for diabetes diagnosis. The framework uses multiple aspects of knowledge-fuzzy inference, ontology reasoning, and a fuzzy analytical hierarchy process (FAHP) to provide a more intuitive and accurate design. First, we build a two-layered hierarchical and interpretable FRBS; then, we improve this by integrating an ontology reasoning process based on SNOMED CT standard ontology. We incorporate FAHP to determine the relative medical importance of each sub-FRBS. The proposed system offers numerous unique and critical improvements regarding the implementation of an accurate, dynamic, semantically intelligent, and interpretable CDSS. The designed system considers the ontology semantic similarity of diabetes complications and symptoms concepts in the fuzzy rules' evaluation process. The framework was tested using a real data set, and the results indicate how the proposed system helps physicians and patients to accurately diagnose diabetes mellitusThis work was supported by National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science, ICT and Future Planning)-NRF-2017R1A2B2012337)S

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Temporal Information in Data Science: An Integrated Framework and its Applications

    Get PDF
    Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems.Data science is a well-known buzzword, that is in fact composed of two distinct keywords, i.e., data and science. Data itself is of great importance: each analysis task begins from a set of examples. Based on such a consideration, the present work starts with the analysis of a real case scenario, by considering the development of a data warehouse-based decision support system for an Italian contact center company. Then, relying on the information collected in the developed system, a set of machine learning-based analysis tasks have been developed to answer specific business questions, such as employee work anomaly detection and automatic call classification. Although such initial applications rely on already available algorithms, as we shall see, some clever analysis workflows had also to be developed. Afterwards, continuously driven by real data and real world applications, we turned ourselves to the question of how to handle temporal information within classical decision tree models. Our research brought us the development of J48SS, a decision tree induction algorithm based on Quinlan's C4.5 learner, which is capable of dealing with temporal (e.g., sequential and time series) as well as atemporal (such as numerical and categorical) data during the same execution cycle. The decision tree has been applied into some real world analysis tasks, proving its worthiness. A key characteristic of J48SS is its interpretability, an aspect that we specifically addressed through the study of an evolutionary-based decision tree pruning technique. Next, since a lot of work concerning the management of temporal information has already been done in automated reasoning and formal verification fields, a natural direction in which to proceed was that of investigating how such solutions may be combined with machine learning, following two main tracks. First, we show, through the development of an enriched decision tree capable of encoding temporal information by means of interval temporal logic formulas, how a machine learning algorithm can successfully exploit temporal logic to perform data analysis. Then, we focus on the opposite direction, i.e., that of employing machine learning techniques to generate temporal logic formulas, considering a natural language processing scenario. Finally, as a conclusive development, the architecture of a system is proposed, in which formal methods and machine learning techniques are seamlessly combined to perform anomaly detection and predictive maintenance tasks. Such an integration represents an original, thrilling research direction that may open up new ways of dealing with complex, real-world problems

    Explainable clinical decision support system: opening black-box meta-learner algorithm expert's based

    Get PDF
    Mathematical optimization methods are the basic mathematical tools of all artificial intelligence theory. In the field of machine learning and deep learning the examples with which algorithms learn (training data) are used by sophisticated cost functions which can have solutions in closed form or through approximations. The interpretability of the models used and the relative transparency, opposed to the opacity of the black-boxes, is related to how the algorithm learns and this occurs through the optimization and minimization of the errors that the machine makes in the learning process. In particular in the present work is introduced a new method for the determination of the weights in an ensemble model, supervised and unsupervised, based on the well known Analytic Hierarchy Process method (AHP). This method is based on the concept that behind the choice of different and possible algorithms to be used in a machine learning problem, there is an expert who controls the decisionmaking process. The expert assigns a complexity score to each algorithm (based on the concept of complexity-interpretability trade-off) through which the weight with which each model contributes to the training and prediction phase is determined. In addition, different methods are presented to evaluate the performance of these algorithms and explain how each feature in the model contributes to the prediction of the outputs. The interpretability techniques used in machine learning are also combined with the method introduced based on AHP in the context of clinical decision support systems in order to make the algorithms (black-box) and the results interpretable and explainable, so that clinical-decision-makers can take controlled decisions together with the concept of "right to explanation" introduced by the legislator, because the decision-makers have a civil and legal responsibility of their choices in the clinical field based on systems that make use of artificial intelligence. No less, the central point is the interaction between the expert who controls the algorithm construction process and the domain expert, in this case the clinical one. Three applications on real data are implemented with the methods known in the literature and with those proposed in this work: one application concerns cervical cancer, another the problem related to diabetes and the last one focuses on a specific pathology developed by HIV-infected individuals. All applications are supported by plots, tables and explanations of the results, implemented through Python libraries. The main case study of this thesis regarding HIV-infected individuals concerns an unsupervised ensemble-type problem, in which a series of clustering algorithms are used on a set of features and which in turn produce an output used again as a set of meta-features to provide a set of labels for each given cluster. The meta-features and labels obtained by choosing the best algorithm are used to train a Logistic regression meta-learner, which in turn is used through some explainability methods to provide the value of the contribution that each algorithm has had in the training phase. The use of Logistic regression as a meta-learner classifier is motivated by the fact that it provides appreciable results and also because of the easy explainability of the estimated coefficients

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference

    Data quality assurance for strategic decision making in Abu Dhabi's public organisations

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Master of Philosophy”.Data quality is an important aspect of an organisation’s strategies for supporting decision makers in reaching the best decisions possible and consequently attaining the organisation’s objectives. In the case of public organisations, decisions ultimately concern the public and hence further diligence is required to make sure that these decisions do, for instance, preserve economic resources, maintain public health, and provide national security. The decision making process requires a wealth of information in order to achieve efficient results. Public organisations typically acquire great amounts of data generated by public services. However, the vast amount of data stored in public organisations’ databases may be one of the main reasons for inefficient decisions made by public organisations. Processing vast amounts of data and extracting accurate information are not easy tasks. Although technology helps in this respect, for example, the use of decision support systems, it is not sufficient for improving decisions to a significant level of assurance. The research proposed using data mining to improve results obtained by decision support systems. However, more considerations are needed than the mere technological aspects. The research argues that a complete data quality framework is needed in order to improve data quality and consequently the decision making process in public organisations. A series of surveys conducted in seven public organisations in Abu Dhabi Emirate of the United Arab Emirates contributed to the design of a data quality framework. The framework comprises elements found necessary to attain the quality of data reaching decision makers. The framework comprises seven elements ranging from technical to human-based found important to attain data quality in public organisations taking Abu Dhabi public organisations as the case. The interaction and integration of these elements contributes to the quality of data reaching decision makers and hence to the efficiency of decisions made by public organisations. The framework suggests that public organisations may need to adopt a methodological basis to support the decision making process. This includes more training courses and supportive bodies of the organisational units, such as decision support centres, information security and strategic management. The framework also underscores the importance of acknowledging human and cultural factors involved in the decision making process. Such factors have implications for how training and raising awareness are implemented to lead to effective methods of system development

    Fuzzy Decision Making and Soft Computing Applications

    Get PDF
    This Special Issue collects original research articles discussing cutting-edge work as well as perspectives on future directions in the whole range of theoretical and practical aspects in these research areas: i) Theory of fuzzy systems and soft computing; ii) Learning procedures; iii) Decision-making applications employing fuzzy logic and soft computing

    Biometric security on body sensor networks

    Get PDF

    Machine Medical Ethics

    Get PDF
    In medical settings, machines are in close proximity with human beings: with patients who are in vulnerable states of health, who have disabilities of various kinds, with the very young or very old, and with medical professionals. Machines in these contexts are undertaking important medical tasks that require emotional sensitivity, knowledge of medical codes, human dignity, and privacy. As machine technology advances, ethical concerns become more urgent: should medical machines be programmed to follow a code of medical ethics? What theory or theories should constrain medical machine conduct? What design features are required? Should machines share responsibility with humans for the ethical consequences of medical actions? How ought clinical relationships involving machines to be modeled? Is a capacity for empathy and emotion detection necessary? What about consciousness? The essays in this collection by researchers from both humanities and science describe various theoretical and experimental approaches to adding medical ethics to a machine, what design features are necessary in order to achieve this, philosophical and practical questions concerning justice, rights, decision-making and responsibility, and accurately modeling essential physician-machine-patient relationships. This collection is the first book to address these 21st-century concerns
    corecore