3,751 research outputs found

    Gravito-inertial waves in a differentially rotating spherical shell

    Full text link
    The gravito-inertial waves propagating over a shellular baroclinic flow inside a rotating spherical shell are analysed using the Boussinesq approximation. The wave properties are examined by computing paths of characteristics in the non-dissipative limit, and by solving the full dissipative eigenvalue problem using a high-resolution spectral method. Gravito-inertial waves are found to obey a mixed-type second-order operator and to be often focused around short-period attractors of characteristics or trapped in a wedge formed by turning surfaces and boundaries. We also find eigenmodes that show a weak dependence with respect to viscosity and heat diffusion just like truly regular modes. Some axisymmetric modes are found unstable and likely destabilized by baroclinic instabilities. Similarly, some non-axisymmetric modes that meet a critical layer (or corotation resonance) can turn unstable at sufficiently low diffusivities. In all cases, the instability is driven by the differential rotation. For many modes of the spectrum, neat power laws are found for the dependence of the damping rates with diffusion coefficients, but the theoretical explanation for the exponent values remains elusive in general. The eigenvalue spectrum turns out to be very rich and complex, which lets us suppose an even richer and more complex spectrum for rotating stars or planets that own a differential rotation driven by baroclinicity.Comment: 33 pages, 14 figures, accepted for publication in Journal of Fluid Mechanic

    Generalized harmonic formulation in spherical symmetry

    Get PDF
    In this pedagogically structured article, we describe a generalized harmonic formulation of the Einstein equations in spherical symmetry which is regular at the origin. The generalized harmonic approach has attracted significant attention in numerical relativity over the past few years, especially as applied to the problem of binary inspiral and merger. A key issue when using the technique is the choice of the gauge source functions, and recent work has provided several prescriptions for gauge drivers designed to evolve these functions in a controlled way. We numerically investigate the parameter spaces of some of these drivers in the context of fully non-linear collapse of a real, massless scalar field, and determine nearly optimal parameter settings for specific situations. Surprisingly, we find that many of the drivers that perform well in 3+1 calculations that use Cartesian coordinates, are considerably less effective in spherical symmetry, where some of them are, in fact, unstable.Comment: 47 pages, 15 figures. v2: Minor corrections, including 2 added references; journal version

    Visco-resistive shear wave dissipation in magnetic X-points

    Get PDF
    We consider the viscous and resistive dissipation of perpendicularly polarized shear waves propagating within a planar magnetic X-point. To highlight the role played by the two-dimensional geometry, the damping of travelling AlfvĂšn waves that propagate within an unbounded, but non-orthogonal X-point topology is analyzed. It is shown that the separatrix geometry affects both the dissipation time and the visco-resistive scaling of the energy decay. Our main focus, however, is on developing a theoretical description of standing wave dissipation for orthogonal, line-tied X-points. A combination of numerical and analytic treatments confirms that phase mixing provides a very effective mechanism for dissipating the wave energy. We show that wave decay comprises two main phases, an initial rapid decay followed by slower eigenmode evolution, both of which are only weakly dependent on the visco-resistive damping coefficients

    Efficient PML for the wave equation

    Full text link
    In the last decade, the perfectly matched layer (PML) approach has proved a flexible and accurate method for the simulation of waves in unbounded media. Most PML formulations, however, usually require wave equations stated in their standard second-order form to be reformulated as first-order systems, thereby introducing many additional unknowns. To circumvent this cumbersome and somewhat expensive step, we instead propose a simple PML formulation directly for the wave equation in its second-order form. Inside the absorbing layer, our formulation requires only two auxiliary variables in two space dimensions and four auxiliary variables in three space dimensions; hence it is cheap to implement. Since our formulation requires no higher derivatives, it is also easily coupled with standard finite difference or finite element methods. Strong stability is proved while numerical examples in two and three space dimensions illustrate the accuracy and long time stability of our PML formulation.Comment: 16 pages, 6 figure

    Continuations of the nonlinear Schr\"odinger equation beyond the singularity

    Full text link
    We present four continuations of the critical nonlinear \schro equation (NLS) beyond the singularity: 1) a sub-threshold power continuation, 2) a shrinking-hole continuation for ring-type solutions, 3) a vanishing nonlinear-damping continuation, and 4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that leads to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity{\rev{expanding core}} after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time TcT_c, the phase of the singular core is only determined up to multiplication by eiΞe^{i\theta}. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t→−tt\rightarrow-t and ψ→ψ∗\psi\rightarrow\psi^\ast, the singular core of the weak solution is symmetric with respect to TcT_c. Therefore, the sub-threshold power and the{\rev{shrinking}}-hole continuations are symmetric with respect to TcT_c, but continuations which are based on perturbations of the NLS equation are generically asymmetric
    • 

    corecore