315 research outputs found

    Polynomial cubic splines with tension properties

    Get PDF
    In this paper we present a new class of spline functions with tension properties. These splines are composed by polynomial cubic pieces and therefore are conformal to the standard, NURBS based CAD/CAM systems

    Extensions to OpenGL for CAGD.

    Get PDF
    Many computer graphic API’s, including OpenGL, emphasize modeling with rectangular patches, which are especially useful in Computer Aided Geomeric Design (CAGD). However, not all shapes are rectangular; some are triangular or more complex. This paper extends the OpenGL library to support the modeling of triangular patches, Coons patches, and Box-splines patches. Compared with the triangular patch created from degenerate rectangular Bezier patch with the existing functions provided by OpenGL, the triangular Bezier patches can be used in certain design situations and allow designers to achieve high-quality results that are less CPU intense and require less storage space. The addition of Coons patches and Box splines to the OpenGL library also give it more functionality. Both patch types give CAGD users more flexibility in designing surfaces. A library for all three patch types was developed as an addition to OpenGL

    Parameterization adaption for 3D shape optimization in aerodynamics

    Full text link
    When solving a PDE problem numerically, a certain mesh-refinement process is always implicit, and very classically, mesh adaptivity is a very effective means to accelerate grid convergence. Similarly, when optimizing a shape by means of an explicit geometrical representation, it is natural to seek for an analogous concept of parameterization adaptivity. We propose here an adaptive parameterization for three-dimensional optimum design in aerodynamics by using the so-called "Free-Form Deformation" approach based on 3D tensorial B\'ezier parameterization. The proposed procedure leads to efficient numerical simulations with highly reduced computational costs

    Multisided generalisations of Gregory patches

    Get PDF
    We propose two generalisations of Gregory patches to faces of any valency by using generalised barycentric coordinates in combination with two kinds of multisided Bézier patches. Our first construction builds on S-patches to generalise triangular Gregory patches. The local construction of Chiyokura and Kimura providing G1 continuity between adjoining Bézier patches is generalised so that the novel Gregory S-patches of any valency can be smoothly joined to one another. Our second construction makes a minor adjustment to the generalised Bézier patch structure to allow for cross-boundary derivatives to be defined independently per side. We show that the corresponding blending functions have the inherent ability to blend ribbon data much like the rational blending functions of Gregory patches. Both constructions take as input a polygonal mesh with vertex normals and provide G1 surfaces interpolating the input vertices and normals. Due to the full locality of the methods, they are well suited for geometric modelling as well as computer graphics applications relying on hardware tessellation

    Compensated evaluation of tensor product surfaces in CAGD

    Get PDF
    In computer-aided geometric design, a polynomial surface is usually represented in Bézier form. The usual form of evaluating such a surface is by using an extension of the de Casteljau algorithm. Using error-free transformations, a compensated version of this algorithm is presented, which improves the usual algorithm in terms of accuracy. A forward error analysis illustrating this fact is developed

    Bézier Method For Image Processing

    Get PDF
    This project concerns about Bézier method in Computer Aided GeometricDesign (CAGD) involving Bézier Curve and Bézier Surface which widely related to the other theorem and method. The aim of this project is to introduce the basic of Bézier method and then generate the Bézier curves, Bézier surfaces, theory and properties and develop Bézier method in image processing application specifically image compression by using MATLAB

    Rational Cubic Ball Interpolants For Shape Preserving Curves And Surfaces

    Get PDF
    Interpolan pengekalan bentuk adalah satu teknik rekabentuk lengkung/ permukaan yang sangat penting dalam CAD/-CAM dan rekabentuk geometric Shape preserving interpolation is an essential curve/surface design technique in CAD/CAM and geometric desig
    corecore