267 research outputs found

    People tracking by cooperative fusion of RADAR and camera sensors

    Get PDF
    Accurate 3D tracking of objects from monocular camera poses challenges due to the loss of depth during projection. Although ranging by RADAR has proven effective in highway environments, people tracking remains beyond the capability of single sensor systems. In this paper, we propose a cooperative RADAR-camera fusion method for people tracking on the ground plane. Using average person height, joint detection likelihood is calculated by back-projecting detections from the camera onto the RADAR Range-Azimuth data. Peaks in the joint likelihood, representing candidate targets, are fed into a Particle Filter tracker. Depending on the association outcome, particles are updated using the associated detections (Tracking by Detection), or by sampling the raw likelihood itself (Tracking Before Detection). Utilizing the raw likelihood data has the advantage that lost targets are continuously tracked even if the camera or RADAR signal is below the detection threshold. We show that in single target, uncluttered environments, the proposed method entirely outperforms camera-only tracking. Experiments in a real-world urban environment also confirm that the cooperative fusion tracker produces significantly better estimates, even in difficult and ambiguous situations

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Overview of Environment Perception for Intelligent Vehicles

    Get PDF
    This paper presents a comprehensive literature review on environment perception for intelligent vehicles. The state-of-the-art algorithms and modeling methods for intelligent vehicles are given, with a summary of their pros and cons. A special attention is paid to methods for lane and road detection, traffic sign recognition, vehicle tracking, behavior analysis, and scene understanding. In addition, we provide information about datasets, common performance analysis, and perspectives on future research directions in this area

    A Comprehensive Mapping and Real-World Evaluation of Multi-Object Tracking on Automated Vehicles

    Get PDF
    Multi-Object Tracking (MOT) is a field critical to Automated Vehicle (AV) perception systems. However, it is large, complex, spans research fields, and lacks resources for integration with real sensors and implementation on AVs. Factors such those make it difficult for new researchers and practitioners to enter the field. This thesis presents two main contributions: 1) a comprehensive mapping for the field of Multi-Object Trackers (MOTs) with a specific focus towards Automated Vehicles (AVs) and 2) a real-world evaluation of an MOT developed and tuned using COTS (Commercial Off-The-Shelf) software toolsets. The first contribution aims to give a comprehensive overview of MOTs and various MOT subfields for AVs that have not been presented as wholistically in other papers. The second contribution aims to illustrate some of the benefits of using a COTS MOT toolset and some of the difficulties associated with using real-world data. This MOT performed accurate state estimation of a target vehicle through the tracking and fusion of data from a radar and vision sensor using a Central-Level Track Processing approach and a Global Nearest Neighbors assignment algorithm. It had an 0.44 m positional Root Mean Squared Error (RMSE) over a 40 m approach test. It is the authors\u27 hope that this work provides an overview of the MOT field that will help new researchers and practitioners enter the field. Additionally, the author hopes that the evaluation section illustrates some difficulties of using real-world data and provides a good pathway for developing and deploying MOTs from software toolsets to Automated Vehicles

    Classification-Aided Robust Multiple Target Tracking Using Neural Enhanced Message Passing

    Full text link
    We address the challenge of tracking an unknown number of targets in strong clutter environments using measurements from a radar sensor. Leveraging the range-Doppler spectra information, we identify the measurement classes, which serve as additional information to enhance clutter rejection and data association, thus bolstering the robustness of target tracking. We first introduce a novel neural enhanced message passing approach, where the beliefs obtained by the unified message passing are fed into the neural network as additional information. The output beliefs are then utilized to refine the original beliefs. Then, we propose a classification-aided robust multiple target tracking algorithm, employing the neural enhanced message passing technique. This algorithm is comprised of three modules: a message-passing module, a neural network module, and a Dempster-Shafer module. The message-passing module is used to represent the statistical model by the factor graph and infers target kinematic states, visibility states, and data associations based on the spatial measurement information. The neural network module is employed to extract features from range-Doppler spectra and derive beliefs on whether a measurement is target-generated or clutter-generated. The Dempster-Shafer module is used to fuse the beliefs obtained from both the factor graph and the neural network. As a result, our proposed algorithm adopts a model-and-data-driven framework, effectively enhancing clutter suppression and data association, leading to significant improvements in multiple target tracking performance. We validate the effectiveness of our approach using both simulated and real data scenarios, demonstrating its capability to handle challenging tracking scenarios in practical radar applications.Comment: 15 page

    An Interactive Likelihood for the Multi-Bernoulli Filter

    Get PDF
    In this thesis, a simple yet effective technique is presented for increasing the accuracy of multi-target tracking algorithms with a focus on sequential Monte-Carlo implementations of random finite set-based approaches. This technique, referred to throughout this work as an interactive likelihood, exploits the spatial information that exists in any given measurement, reducing the need for data association and allowing for more target interaction thereby increasing overall tracking accuracy. The interactive likelihood is constructed entirely within the random finite set framework and is integrated with a multi-Bernoulli filter. In addition, a state-of-the-art deep neural network for pedestrian detection is combined in a novel way with the multi-Bernoulli filter and interactive likelihood in order to obtain a very general and flexible random finite set-based multi-target tracking algorithm. The performance of the algorithm is evaluated in a number of publicly available datasets (2003 PETS INMOVE, AFL, and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (OSPA and CLEAR MOT)

    Advanced signal processing techniques for multi-target tracking

    Get PDF
    The multi-target tracking problem essentially involves the recursive joint estimation of the state of unknown and time-varying number of targets present in a tracking scene, given a series of observations. This problem becomes more challenging because the sequence of observations is noisy and can become corrupted due to miss-detections and false alarms/clutter. Additionally, the detected observations are indistinguishable from clutter. Furthermore, whether the target(s) of interest are point or extended (in terms of spatial extent) poses even more technical challenges. An approach known as random finite sets provides an elegant and rigorous framework for the handling of the multi-target tracking problem. With a random finite sets formulation, both the multi-target states and multi-target observations are modelled as finite set valued random variables, that is, random variables which are random in both the number of elements and the values of the elements themselves. Furthermore, compared to other approaches, the random finite sets approach possesses a desirable characteristic of being free of explicit data association prior to tracking. In addition, a framework is available for dealing with random finite sets and is known as finite sets statistics. In this thesis, advanced signal processing techniques are employed to provide enhancements to and develop new random finite sets based multi-target tracking algorithms for the tracking of both point and extended targets with the aim to improve tracking performance in cluttered environments. To this end, firstly, a new and efficient Kalman-gain aided sequential Monte Carlo probability hypothesis density (KG-SMC-PHD) filter and a cardinalised particle probability hypothesis density (KG-SMC-CPHD) filter are proposed. These filters employ the Kalman- gain approach during weight update to correct predicted particle states by minimising the mean square error between the estimated measurement and the actual measurement received at a given time in order to arrive at a more accurate posterior. This technique identifies and selects those particles belonging to a particular target from a given PHD for state correction during weight computation. The proposed SMC-CPHD filter provides a better estimate of the number of targets. Besides the improved tracking accuracy, fewer particles are required in the proposed approach. Simulation results confirm the improved tracking performance when evaluated with different measures. Secondly, the KG-SMC-(C)PHD filters are particle filter (PF) based and as with PFs, they require a process known as resampling to avoid the problem of degeneracy. This thesis proposes a new resampling scheme to address a problem with the systematic resampling method which causes a high tendency of resampling very low weight particles especially when a large number of resampled particles are required; which in turn affect state estimation. Thirdly, the KG-SMC-(C)PHD filters proposed in this thesis perform filtering and not tracking , that is, they provide only point estimates of target states but do not provide connected estimates of target trajectories from one time step to the next. A new post processing step using game theory as a solution to this filtering - tracking problem is proposed. This approach was named the GTDA method. This method was employed in the KG-SMC-(C)PHD filter as a post processing technique and was evaluated using both simulated and real data obtained using the NI-USRP software defined radio platform in a passive bi-static radar system. Lastly, a new technique for the joint tracking and labelling of multiple extended targets is proposed. To achieve multiple extended target tracking using this technique, models for the target measurement rate, kinematic component and target extension are defined and jointly propagated in time under the generalised labelled multi-Bernoulli (GLMB) filter framework. The GLMB filter is a random finite sets-based filter. In particular, a Poisson mixture variational Bayesian (PMVB) model is developed to simultaneously estimate the measurement rate of multiple extended targets and extended target extension was modelled using B-splines. The proposed method was evaluated with various performance metrics in order to demonstrate its effectiveness in tracking multiple extended targets
    • …
    corecore