48 research outputs found

    Clique-Stable Set separation in perfect graphs with no balanced skew-partitions

    Get PDF
    Inspired by a question of Yannakakis on the Vertex Packing polytope of perfect graphs, we study the Clique-Stable Set Separation in a non-hereditary subclass of perfect graphs. A cut (B,W) of G (a bipartition of V(G)) separates a clique K and a stable set S if K⊆BK\subseteq B and S⊆WS\subseteq W. A Clique-Stable Set Separator is a family of cuts such that for every clique K, and for every stable set S disjoint from K, there exists a cut in the family that separates K and S. Given a class of graphs, the question is to know whether every graph of the class admits a Clique-Stable Set Separator containing only polynomially many cuts. It is open for the class of all graphs, and also for perfect graphs, which was Yannakakis' original question. Here we investigate on perfect graphs with no balanced skew-partition; the balanced skew-partition was introduced in the proof of the Strong Perfect Graph Theorem. Recently, Chudnovsky, Trotignon, Trunck and Vuskovic proved that forbidding this unfriendly decomposition permits to recursively decompose Berge graphs using 2-join and complement 2-join until reaching a basic graph, and they found an efficient combinatorial algorithm to color those graphs. We apply their decomposition result to prove that perfect graphs with no balanced skew-partition admit a quadratic-size Clique-Stable Set Separator, by taking advantage of the good behavior of 2-join with respect to this property. We then generalize this result and prove that the Strong Erdos-Hajnal property holds in this class, which means that every such graph has a linear-size biclique or complement biclique. This property does not hold for all perfect graphs (Fox 2006), and moreover when the Strong Erdos-Hajnal property holds in a hereditary class of graphs, then both the Erdos-Hajnal property and the polynomial Clique-Stable Set Separation hold.Comment: arXiv admin note: text overlap with arXiv:1308.644

    On Box-Perfect Graphs

    Get PDF
    Let G=(V,E)G=(V,E) be a graph and let AGA_G be the clique-vertex incidence matrix of GG. It is well known that GG is perfect iff the system AGx≤1A_{_G}\mathbf x\le \mathbf 1, x≥0\mathbf x\ge\mathbf0 is totally dual integral (TDI). In 1982, Cameron and Edmonds proposed to call GG box-perfect if the system AGx≤1A_{_G}\mathbf x\le \mathbf 1, x≥0\mathbf x\ge\mathbf0 is box-totally dual integral (box-TDI), and posed the problem of characterizing such graphs. In this paper we prove the Cameron-Edmonds conjecture on box-perfectness of parity graphs, and identify several other classes of box-perfect graphs. We also develop a general and powerful method for establishing box-perfectness

    A polynomial Turing-kernel for weighted independent set in bull-free graphs

    Get PDF
    The maximum stable set problem is NP-hard, even when restricted to triangle-free graphs. In particular, one cannot expect a polynomial time algorithm deciding if a bull-free graph has a stable set of size k, when k is part of the instance. Our main result in this paper is to show the existence of an FPT algorithm when we parameterize the problem by the solution size k. A polynomial kernel is unlikely to exist for this problem. We show however that our problem has a polynomial size Turingkernel. More precisely, the hard cases are instances of size O(k5). As a byproduct, if we forbid odd holes in addition to the bull, we show the existence of a polynomial time algorithm for the stable set problem. We also prove that the chromatic number of a bull-free graph is bounded by a function of its clique number and the maximum chromatic number of its triangle-free induced subgraphs. All our results rely on a decomposition theorem for bull-free graphs due to Chudnovsky which is modified here, allowing us to provide extreme decompositions, adapted to our computational purpose
    corecore