7 research outputs found

    Ring-current maps for benzenoids : comparisons, contradictions, and a versatile combinatorial model

    Get PDF
    As a key diagnostic property of benzenoids and other polycyclic hydrocarbons, induced ring current has inspired diverse approaches for calculation, modeling, and interpretation. Grid-based methods include the ipsocentric ab initio calculation of current maps, and its surrogate, the pseudo-π model. Graph-based models include a family of conjugated-circuit (CC) models and the molecular-orbital Hückel-London (HL) model. To assess competing claims for physical relevance of derived current maps for benzenoids, a protocol for graph-reduction and comparison was devised. Graph reduction of pseudo-π grid maps highlights their overall similarity to HL maps, but also reveals systematic differences. These are ascribed to unavoidable pseudo-π proximity limitations for benzenoids with short nonbonded distances, and to poor continuity of pseudo-π current for classes of benzenoids with fixed bonds, where single-reference methods can be unreliable. Comparison between graph-based approaches shows that the published CC models all shadow HL maps reasonably well for most benzenoids (as judged by L1-, L2-, and L∞-error norms on scaled bond currents), though all exhibit physically implausible currents for systems with fixed bonds. These comparisons inspire a new combinatorial model (Model W) based on cycle decomposition of current, taking into account the two terms of lowest order that occur in the characteristic polynomial. This improves on all pure-CC models within their range of applicability, giving excellent adherence to HL maps for all Kekulean benzenoids, including those with fixed bonds (halving the rms discrepancy against scaled HL bond currents, from 11% in the best CC model, to 5% for the set of 18 360 Kekulean benzenoids on up to 10 hexagonal rings). Model W also has excellent performance for open-shell systems, where currents cannot be described at all by pure CC models (4% rms discrepancy against scaled HL bond currents for the 20112 non-Kekulean benzenoids on up to 10 hexagonal rings). Consideration of largest and next-to-largest matchings is a useful strategy for modeling and interpretation of currents in Kekulean and non-Kekulean benzenoids (nanographenes)

    Forcing, Freedom, & Uniqueness in Graph Theory & Chemistry

    Get PDF
    Harary’s & Randić’s ideas of “forcing” & “freedom” involve subsets of double bonds of Kekule structure such as to be unique to that Kekule structure. Such forcing sets are argued to be greatly generalizable to deal with various other coverings, and thence forcing seems to be fundamental, and of notable potential utility. Various forcing invariants associated to (molecular) graphs ensue, with illustrative (chemical) ex-amples and some mathematical consequences being provided. A complementary “uniqueness” idea is not-ed, and the general characteristic of “derivativity” of “forcing” is established (as is relevant for QSPR fit-tings). Different ways in which different sorts of forcings arise in chemistry are briefly indicated.(doi: 10.5562/cca2000

    Enumerating molecules.

    Full text link
    corecore