16,684 research outputs found

    Decomposing generalized bent and hyperbent functions

    Get PDF
    In this paper we introduce generalized hyperbent functions from F2nF_{2^n} to Z2kZ_{2^k}, and investigate decompositions of generalized (hyper)bent functions. We show that generalized (hyper)bent functions from F2nF_{2^n} to Z2kZ_{2^k} consist of components which are generalized (hyper)bent functions from F2nF_{2^n} to Z2k′Z_{2^{k^\prime}} for some k′<kk^\prime < k. For odd nn, we show that the Boolean functions associated to a generalized bent function form an affine space of semibent functions. This complements a recent result for even nn, where the associated Boolean functions are bent.Comment: 24 page

    Octal Bent Generalized Boolean Functions

    Get PDF
    In this paper we characterize (octal) bent generalized Boolean functions defined on \BBZ_2^n with values in \BBZ_8. Moreover, we propose several constructions of such generalized bent functions for both nn even and nn odd

    Bent functions in the partial spread class generated by linear recurring sequences

    Get PDF
    We present a construction of partial spread bent functions using subspaces generated by linear recurring sequences (LRS). We first show that the kernels of the linear mappings defined by two LRS have a trivial intersection if and only if their feedback polynomials are relatively prime. Then, we characterize the appropriate parameters for a family of pairwise coprime polynomials to generate a partial spread required for the support of a bent function, showing that such families exist if and only if the degrees of the underlying polynomials are either 1 or 2. We then count the resulting sets of polynomials and prove that, for degree 1, our LRS construction coincides with the Desarguesian partial spread. Finally, we perform a computer search of all PS− and PS+ bent functions of n=8 variables generated by our construction and compute their 2-ranks. The results show that many of these functions defined by polynomials of degree d=2 are not EA-equivalent to any Maiorana–McFarland or Desarguesian partial spread function
    • …
    corecore