3,831 research outputs found

    Benign Overfitting in Linear Regression

    Full text link
    The phenomenon of benign overfitting is one of the key mysteries uncovered by deep learning methodology: deep neural networks seem to predict well, even with a perfect fit to noisy training data. Motivated by this phenomenon, we consider when a perfect fit to training data in linear regression is compatible with accurate prediction. We give a characterization of linear regression problems for which the minimum norm interpolating prediction rule has near-optimal prediction accuracy. The characterization is in terms of two notions of the effective rank of the data covariance. It shows that overparameterization is essential for benign overfitting in this setting: the number of directions in parameter space that are unimportant for prediction must significantly exceed the sample size. By studying examples of data covariance properties that this characterization shows are required for benign overfitting, we find an important role for finite-dimensional data: the accuracy of the minimum norm interpolating prediction rule approaches the best possible accuracy for a much narrower range of properties of the data distribution when the data lies in an infinite dimensional space versus when the data lies in a finite dimensional space whose dimension grows faster than the sample size

    Benign Overfitting in Multiclass Classification: All Roads Lead to Interpolation

    Full text link
    The growing literature on "benign overfitting" in overparameterized models has been mostly restricted to regression or binary classification settings; however, most success stories of modern machine learning have been recorded in multiclass settings. Motivated by this discrepancy, we study benign overfitting in multiclass linear classification. Specifically, we consider the following popular training algorithms on separable data: (i) empirical risk minimization (ERM) with cross-entropy loss, which converges to the multiclass support vector machine (SVM) solution; (ii) ERM with least-squares loss, which converges to the min-norm interpolating (MNI) solution; and, (iii) the one-vs-all SVM classifier. First, we provide a simple sufficient condition under which all three algorithms lead to classifiers that interpolate the training data and have equal accuracy. When the data is generated from Gaussian mixtures or a multinomial logistic model, this condition holds under high enough effective overparameterization. Second, we derive novel error bounds on the accuracy of the MNI classifier, thereby showing that all three training algorithms lead to benign overfitting under sufficient overparameterization. Ultimately, our analysis shows that good generalization is possible for SVM solutions beyond the realm in which typical margin-based bounds apply

    Theoretical Characterization of the Generalization Performance of Overfitted Meta-Learning

    Full text link
    Meta-learning has arisen as a successful method for improving training performance by training over many similar tasks, especially with deep neural networks (DNNs). However, the theoretical understanding of when and why overparameterized models such as DNNs can generalize well in meta-learning is still limited. As an initial step towards addressing this challenge, this paper studies the generalization performance of overfitted meta-learning under a linear regression model with Gaussian features. In contrast to a few recent studies along the same line, our framework allows the number of model parameters to be arbitrarily larger than the number of features in the ground truth signal, and hence naturally captures the overparameterized regime in practical deep meta-learning. We show that the overfitted min â„“2\ell_2-norm solution of model-agnostic meta-learning (MAML) can be beneficial, which is similar to the recent remarkable findings on ``benign overfitting'' and ``double descent'' phenomenon in the classical (single-task) linear regression. However, due to the uniqueness of meta-learning such as task-specific gradient descent inner training and the diversity/fluctuation of the ground-truth signals among training tasks, we find new and interesting properties that do not exist in single-task linear regression. We first provide a high-probability upper bound (under reasonable tightness) on the generalization error, where certain terms decrease when the number of features increases. Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large. Under this circumstance, we show that the overfitted min â„“2\ell_2-norm solution can achieve an even lower generalization error than the underparameterized solution

    Feature and Variable Selection in Classification

    Full text link
    The amount of information in the form of features and variables avail- able to machine learning algorithms is ever increasing. This can lead to classifiers that are prone to overfitting in high dimensions, high di- mensional models do not lend themselves to interpretable results, and the CPU and memory resources necessary to run on high-dimensional datasets severly limit the applications of the approaches. Variable and feature selection aim to remedy this by finding a subset of features that in some way captures the information provided best. In this paper we present the general methodology and highlight some specific approaches.Comment: Part of master seminar in document analysis held by Marcus Eichenberger-Liwick

    Benign Overfitting in Classification: Provably Counter Label Noise with Larger Models

    Full text link
    Studies on benign overfitting provide insights for the success of overparameterized deep learning models. In this work, we examine whether overfitting is truly benign in real-world classification tasks. We start with the observation that a ResNet model overfits benignly on Cifar10 but not benignly on ImageNet. To understand why benign overfitting fails in the ImageNet experiment, we theoretically analyze benign overfitting under a more restrictive setup where the number of parameters is not significantly larger than the number of data points. Under this mild overparameterization setup, our analysis identifies a phase change: unlike in the previous heavy overparameterization settings, benign overfitting can now fail in the presence of label noise. Our analysis explains our empirical observations, and is validated by a set of control experiments with ResNets. Our work highlights the importance of understanding implicit bias in underfitting regimes as a future direction.Comment: Published as a conference paper at ICLR 202

    Skin lesion classification from dermoscopic images using deep learning techniques

    Get PDF
    The recent emergence of deep learning methods for medical image analysis has enabled the development of intelligent medical imaging-based diagnosis systems that can assist the human expert in making better decisions about a patient’s health. In this paper we focus on the problem of skin lesion classification, particularly early melanoma detection, and present a deep-learning based approach to solve the problem of classifying a dermoscopic image containing a skin lesion as malignant or benign. The proposed solution is built around the VGGNet convolutional neural network architecture and uses the transfer learning paradigm. Experimental results are encouraging: on the ISIC Archive dataset, the proposed method achieves a sensitivity value of 78.66%, which is significantly higher than the current state of the art on that dataset.Postprint (author's final draft
    • …
    corecore