2,677 research outputs found

    Assessment of the added value of the Twente Photoacoustic Mammoscope in breast cancer diagnosis\ud

    Get PDF
    Purpose: Photoacoustic (PA) imaging is a recently developed breast cancer imaging technique. In order to enhance successful clinical implementation, we quantified the potential clinical value of different scenarios incorporating PA imaging by means of multi-criteria analysis. From this analysis, the most promising area of application for PA imaging in breast cancer diagnosis is determined, and recommendations are provided to optimize the design of PA imaging. - \ud Methods: The added value of PA imaging was assessed in two areas of application in the diagnostic track. These areas include PA imaging as an alternative to x-ray mammography and ultrasonography in early stage diagnosis, and PA imaging as an alternative to Magnetic Resonance Imaging (MRI) in later stage diagnosis. The added value of PA imaging was assessed with respect to four main criteria (costs, diagnostic performance, patient comfort and risks). An expert panel composed of medical, technical and management experts was asked to assess the relative importance of the criteria in comparing the alternative diagnostic devices. The judgments of the experts were quantified based on the validated pairwise comparison technique of the Analytic Hierarchy Process, a technique for multi-criteria analysis. Sensitivity analysis was applied to account for the uncertainty of the outcomes. - \ud Results: Among the considered alternatives, PA imaging is the preferred technique due to its non-invasiveness, low cost and low risks. However, the experts do not expect large differences in diagnostic performance. The outcomes suggest that design changes to improve the diagnostic performance of PA imaging should focus on the quality of the reconstruction algorithm, detector sensitivity, detector bandwidth and the number of wavelengths used. - \ud Conclusion: The AHP method was useful in recommending the most promising area of application in the diagnostic track for which PA imaging can be implemented, this being early diagnosis, as a substitute for the combined use of x-ray mammography and ultrasonography

    Passively mode-locked laser using an entirely centred erbium-doped fiber

    Get PDF
    This paper describes the setup and experimental results for an entirely centred erbium-doped fiber laser with passively mode-locked output. The gain medium of the ring laser cavity configuration comprises a 3 m length of two-core optical fiber, wherein an undoped outer core region of 9.38 μm diameter surrounds a 4.00 μm diameter central core region doped with erbium ions at 400 ppm concentration. The generated stable soliton mode-locking output has a central wavelength of 1533 nm and pulses that yield an average output power of 0.33 mW with a pulse energy of 31.8 pJ. The pulse duration is 0.7 ps and the measured output repetition rate of 10.37 MHz corresponds to a 96.4 ns pulse spacing in the pulse train

    Clinical application of low-dose phase contrast breast CT: methods for the optimization of the reconstruction workflow

    Get PDF
    Results are presented of a feasibility study of three-dimensional X-ray tomographic mammography utilising in-line phase contrast. Experiments were performed at SYRMEP beamline of Elettra synchrotron. A specially designed plastic phantom and a mastectomy sample containing a malignant lesion were used to study the reconstructed image quality as a function of different image processing operations. Detailed evaluation and optimization of image reconstruction workflows have been carried out using combinations of several advanced computed tomography algorithms with different pre-processing and post-processing steps. Special attention was paid to the effect of phase retrieval on the diagnostic value of the reconstructed images. A number of objective image quality indices have been applied for quantitative evaluation of the results, and these were compared with subjective assessments of the same images by three experienced radiologists and one pathologist. The outcomes of this study provide practical guidelines for the optimization of image processing workflows in synchrotron-based phase-contrast mammo-tomography

    Impact of total variation minimization in volume rendering visualization of breast tomosynthesis data

    Get PDF
    Background and objective: Total Variation (TV) minimization algorithms have achieved great attention due to the virtue of decreasing noise while preserving edges. The purpose of this work is to implement and evaluate two TV minimization methods in 3D. Their performance is analyzed through 3D visualization of digital breast tomosynthesis (DBT) data with volume rendering. Methods: Both filters were studied with real phantom and one clinical DBT data. One algorithm was applied sequentially to all slices and the other was applied to the entire volume at once. The suitable Lagrange multiplier used in each filter equation was studied to reach the minimum 3D TV and the maximum contrast-to-noise ratio (CNR). Imaging blur was measured at 0° and 90° using two disks with different diameters (0.5 mm and 5.0 mm) and equal thickness. The quality of unfiltered and filtered data was analyzed with volume rendering at 0° and 90°. Results: For phantom data, with the sequential filter, a decrease of 25% in 3D TV value and an increase of 19% and 30% in CNR at 0° and 90°, respectively, were observed. When the filter is applied directly in 3D, TV value was reduced by 35% and an increase of 36% was achieved both for CNR at 0° and 90°. For the smaller disk, variations of 0% in width at half maximum (FWHM) at 0° and a decrease of about 2.5% for FWHM at 90° were observed for both filters. For the larger disk, there was a 2.5% increase in FWHM at 0° for both filters and a decrease of 6.28% and 1.69% in FWHM at 90° with the sequential filter and the 3D filter, respectively. When applied to clinical data, the performance of each filter was consistent with that obtained with the phantom. Conclusions: Data analysis confirmed the relevance of these methods in improving quality of DBT images. Additionally, this type of 3D visualization showed that it may play an important complementary role in DBT imaging. It allows to visualize all DBT data at once and to analyze properly filters applied to all the three dimensions

    Visualization and Bayesian Inference

    Get PDF
    The apparent difficulty people have with making Bayesian inferences has been researched heavily over the past 25 years, with conflicting explanations regarding the causes of and the cures for this inadequacy. Some researchers have improved Bayesian reasoning by representing the problem visually, but usually as a tool to teach Bayesian reasoning skills. This research examines facilitating reasoning performance in naïve Bayesian subjects without attempting to teach Bayesian reasoning skills. This approach is more relevant for everyday decision support situations where subjects do not or need not possess knowledge of Bayes theorem (naïve subjects). Several different visual representations (VRs) will be examined to determine which visualization technique generates the best decision performance. For this specific problem, certain visualization representations (VRs) may reveal the problem structure better than others, improving decision making, regardless of the whether number is represented as a natural frequency or a probability. VRs should be stable with regard to different base rates and reference class sizes. Using dual processing theories of cognition, this research will explain other aspects of this judgment task, including how users create and choose their strategies in solving this task and why subjects may have low levels of confidence in their results yet exhibit high task performance. Hopefully this research will help paint a clearer picture of the best ways for decision support systems to represent information in Bayesian inference tasks to naïve subjects and how VRs can enhance naïve subject performance in a variety of judgment and decision making tasks

    Focal Spot, Winter 2006/2007

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1104/thumbnail.jp
    corecore