161 research outputs found

    Benefits of data augmentation for NMT-based text normalization of user-generated content

    Get PDF
    One of the most persistent characteristics of written user-generated content (UGC) is the use of non-standard words. This characteristic contributes to an increased difficulty to automatically process and analyze UGC. Text normalization is the task of transforming lexical variants to their canonical forms and is often used as a pre-processing step for conventional NLP tasks in order to overcome the performance drop that NLP systems experience when applied to UGC. In this work, we follow a Neural Machine Translation approach to text normalization. To train such an encoder-decoder model, large parallel training corpora of sentence pairs are required. However, obtaining large data sets with UGC and their normalized version is not trivial, especially for languages other than English. In this paper, we explore how to overcome this data bottleneck for Dutch, a low-resource language. We start off with a publicly available tiny parallel Dutch data set comprising three UGC genres and compare two different approaches. The first is to manually normalize and add training data, a money and time-consuming task. The second approach is a set of data augmentation techniques which increase data size by converting existing resources into synthesized non-standard forms. Our results reveal that a combination of both approaches leads to the best results

    Self-supervised learning in natural language processing

    Get PDF
    Most natural language processing (NLP) learning algorithms require labeled data. While this is given for a select number of (mostly English) tasks, the availability of labeled data is sparse or non-existent for the vast majority of use-cases. To alleviate this, unsupervised learning and a wide array of data augmentation techniques have been developed (Hedderich et al., 2021a). However, unsupervised learning often requires massive amounts of unlabeled data and also fails to perform in difficult (low-resource) data settings, i.e., if there is an increased distance between the source and target data distributions (Kim et al., 2020). This distributional distance can be the case if there is a domain drift or large linguistic distance between the source and target data. Unsupervised learning in itself does not exploit the highly informative (labeled) supervisory signals hidden in unlabeled data. In this dissertation, we show that by combining the right unsupervised auxiliary task (e.g., sentence pair extraction) with an appropriate primary task (e.g., machine translation), self-supervised learning can exploit these hidden supervisory signals more efficiently than purely unsupervised approaches, while functioning on less labeled data than supervised approaches. Our self-supervised learning approach can be used to learn NLP tasks in an efficient manner, even when the amount of training data is sparse or the data comes with strong differences in its underlying distribution, e.g., stemming from unrelated languages. For our general approach, we applied unsupervised learning as an auxiliary task to learn a supervised primary task. Concretely, we have focused on the auxiliary task of sentence pair extraction for sequence-to-sequence primary tasks (i.e., machine translation and style transfer) as well as language modeling, clustering, subspace learning and knowledge integration for primary classification tasks (i.e., hate speech detection and sentiment analysis). For sequence-to-sequence tasks, we show that self-supervised neural machine translation (NMT) achieves competitive results on high-resource language pairs in comparison to unsupervised NMT while requiring less data. Further combining self-supervised NMT with unsupervised NMT-inspired augmentation techniques makes the learning of low-resource (similar, distant and unrelated) language pairs possible. Further, using our self-supervised approach, we show how style transfer can be learned without the need for parallel data, generating stylistic rephrasings of highest overall performance on all tested tasks. For sequence-to-label tasks, we underline the benefit of auxiliary task-based augmentation over primary task augmentation. An auxiliary task that showed to be especially beneficial to the primary task performance was subspace learning, which led to impressive gains in (cross-lingual) zero-shot classification performance on similar or distant target tasks, also on similar, distant and unrelated languages.Die meisten Lernalgorithmen der Computerlingistik (CL) benötigen gelabelte Daten. Diese sind zwar für eine Auswahl an (hautpsächlich Englischen) Aufgaben verfügbar, für den Großteil aller Anwendungsfälle sind gelabelte Daten jedoch nur spärrlich bis gar nicht vorhanden. Um dem gegenzusteuern, wurde eine große Auswahl an Techniken entwickelt, welche sich das unüberwachte Lernen oder Datenaugmentierung zu eigen machen (Hedderich et al., 2021a). Unüberwachtes Lernen benötigt jedoch massive Mengen an ungelabelten Daten und versagt, wenn es mit schwierigen (resourcenarmen) Datensituationen konfrontiert wird, d.h. wenn eine größere Distanz zwischen der Quellen- und Zieldatendistributionen vorhanden ist (Kim et al., 2020). Eine distributionelle Distanz kann zum Beispiel der Fall sein, wenn ein Domänenunterschied oder eine größere sprachliche Distanz zwischen der Quellenund Zieldaten besteht. Unüberwachtes Lernen selbst nutzt die hochinformativen (gelabelten) Überwachungssignale, welche sich in ungelabelte Daten verstecken, nicht aus. In dieser Dissertation zeigen wir, dass selbstüberwachtes Lernen, durch die Kombination der richtigen unüberwachten Hilfsaufgabe (z.B. Satzpaarextraktion) mit einer passenden Hauptaufgabe (z.B. maschinelle Übersetzung), diese versteckten Überwachsungssignale effizienter ausnutzen kann als pure unüberwachte Lernalgorithmen, und dabei auch noch weniger gelabelte Daten benötigen als überwachte Lernalgorithmen. Unser selbstüberwachter Lernansatz erlaubt es uns, CL Aufgaben effizient zu lernen, selbst wenn die Trainingsdatenmenge spärrlich ist oder die Daten mit starken distributionellen Differenzen einher gehen, z.B. weil die Daten von zwei nicht verwandten Sprachen stammen. Im Generellen haben wir unüberwachtes Lernen als Hilfsaufgabe angewandt um eine überwachte Hauptaufgabe zu erlernen. Konkret haben wir uns auf Satzpaarextraktion als Hilfsaufgabe für Sequenz-zu-Sequenz Hauptaufgaben (z.B. maschinelle Übersetzung und Stilübertragung) konzentriert sowohl als auch Sprachmodelierung, Clustern, Teilraumlernen und Wissensintegration zum erlernen von Klassifikationsaufgaben (z.B. Hassredenidentifikation und Sentimentanalyse). Für Sequenz-zu-Sequenz Aufgaben zeigen wir, dass selbstüberwachte maschinelle Übersetzung (MÜ) im Vergleich zur unüberwachten MÜ wettbewerbsfähige Ergebnisse auf resourcenreichen Sprachpaaren erreicht und währenddessen weniger Daten zum Lernen benötigt. Wenn selbstüberwachte MÜ mit Augmentationstechniken, inspiriert durch unüberwachte MÜ, kombiniert wird, wird auch das Lernen von resourcenarmen (ähnlichen, entfernt verwandten und nicht verwandten) Sprachpaaren möglich. Außerdem zeigen wir, wie unser selbsüberwachter Lernansatz es ermöglicht Stilübertragung ohne parallele Daten zu erlernen und dabei stylistische Umformulierungen von höchster Qualität auf allen geprüften Aufgaben zu erlangen. Für Sequenz-zu-Label Aufgaben unterstreichen wir den Vorteil, welchen hilfsaufgabenseitige Augmentierung über hauptaufgabenseitige Augmentierung hat. Eine Hilfsaufgabe welche sich als besonders hilfreich für die Qualität der Hauptaufgabe herausstellte ist das Teilraumlernen, welches zu beeindruckenden Leistungssteigerungen für (sprachübergreifende) zero-shot Klassifikation ähnlicher und entfernter Zielaufgaben (auch für ähnliche, entfernt verwandte und nicht verwandte Sprachen) führt

    Continuous 3D Multi-Channel Sign Language Production via Progressive Transformers and Mixture Density Networks

    Full text link
    Sign languages are multi-channel visual languages, where signers use a continuous 3D space to communicate.Sign Language Production (SLP), the automatic translation from spoken to sign languages, must embody both the continuous articulation and full morphology of sign to be truly understandable by the Deaf community. Previous deep learning-based SLP works have produced only a concatenation of isolated signs focusing primarily on the manual features, leading to a robotic and non-expressive production. In this work, we propose a novel Progressive Transformer architecture, the first SLP model to translate from spoken language sentences to continuous 3D multi-channel sign pose sequences in an end-to-end manner. Our transformer network architecture introduces a counter decoding that enables variable length continuous sequence generation by tracking the production progress over time and predicting the end of sequence. We present extensive data augmentation techniques to reduce prediction drift, alongside an adversarial training regime and a Mixture Density Network (MDN) formulation to produce realistic and expressive sign pose sequences. We propose a back translation evaluation mechanism for SLP, presenting benchmark quantitative results on the challenging PHOENIX14T dataset and setting baselines for future research. We further provide a user evaluation of our SLP model, to understand the Deaf reception of our sign pose productions

    Text Normalisation of Dialectal Finnish

    Get PDF
    Tekstin normalisointi on prosessi, jossa epästandardia kirjoitettua kieltä muutetaan standardisoituun muotoon. Murteet ovat yksi esimerkki epästandardista kielestä, joka voi poiketa huomattavastikin standardisoidusta yleiskielestä. Lisäksi suomen kieli on ortografialtaan varsin pitkälti foneemista, minkä ansiosta myös puhutun kielen ominaispiirteet on mahdollista tuoda esille kirjoitetussa muodossa. Etenkin epävirallisilla alustoilla ja arkikielisessä kontekstissa, kuten sosiaalisessa mediassa, suomen kielen puhujat saattavat kirjoittaa sanat kuten ääntäisivät ne normaalisti puhuessaan. Tällaista epästandardista kielestä koostuvaa aineistoa voi löytää myös luonnollisen kielen käsittelyn tarpeisiin esimerkiksi Twitteristä. Perinteiselle yleiskieliselle tekstiaineistolle suunnatut luonnollisen kielen käsittelyn työkalut eivät kuitenkaan välttämättä saavuta toivottavia tuloksia puhekieliselle aineistolle sovellettuna, jolloin ratkaisuna voidaan käyttää välivaiheena tekstin normalisointia. Normalisointiprosessissa syötteenä käytettävä puhekielinen tai muutoin epästandardia kieltä sisältävä teksti muutetaan standardisoituun kirjoitusasuun, jota luonnollisen kielen käsittelyn työkalut paremmin ymmärtävät. Tämä työ pohjaa aiempaan tutkimukseen, jota on tehty suomen murteiden normalisoinnin parissa. Aiemmissa tutkimuksissa on todettu, että merkkipohjaiset BRNN-neuroverkkomallit (Bidirectional Recurrent Neural Nerwork) saavuttavat hyviä tuloksia suomen kielen murteiden normalisoinnissa, kun syötteenä käytetään sanoja kolmen kappaleen lohkoissa. Tämä tarkoittaa, että järjestelmä saa syötteenä kerrallaan kolmen sanan joukon, ja jokainen sana on edelleen pilkottu välilyönnein eroteltuihin kirjoitusmerkkeihin. Tässä työssä pyrittiin käyttämään samoja metodeja ja aineistoa kuin aiemmassa tutkimuksessa, jotta tulokset olisivat vertailukelpoisia. Aineistona on käytetty Kotimaisten kielten keskuksen ylläpitämää Suomen kielen näytteitä -korpusta, ja normalisointiin on käytetty OpenNMT-nimistä avoimen lähdekoodin kirjastoa. Työssä toteutetuista kokeiluista saadut tulokset näyttävät vahvistavan aiempien tutkimustulosten pohjalta tehdyt löydökset, mutta lisäksi on viitteitä siitä, että neuroverkkomallit saattaisivat pidemmistä lohkoista koostuvista syötteistä. BRNN-mallin lisäksi työssä kokeillaan myös muita neuroverkkoarkkitehtuureja, mutta vertailtaessa sanavirheiden suhdelukua mittaavaa WER-arvoa (Word Error Rate) voidaan todeta, että BRNN-malli suoriutuu normalisointitehtävästä muita neuroverkkoarkkitehtuureja paremmin
    corecore