2,961 research outputs found

    Design and evaluation of a haptically enable virtual environmentfor object assembly training

    Full text link

    Virtual reality application for rehabilitation

    Get PDF
    Aquest projecte té com a objectiu desenvolupar una aplicació de Realitat Virtual funcional per a la rehabilitació i el benestar de la gent gran en residències d’avis. El que es pretén és complementar el tractament de rehabilitació dels pacients mitjançant jocs de Realitat Virtual que els permetin realitzar moviments repetitius mentre es mouen per un entorn natural immersiu.Este proyecto tiene como objetivo desarrollar una aplicación de Realidad Virtual funcional para la rehabilitación y el bienestar de las personas mayores en residencias de ancianos. Lo que se pretende es complementar el tratamiento de rehabilitación de los pacientes mediante juegos de Realidad Virtual que les permitan realizar movimientos repetitivos mientras se mueven por un entorno natural inmersivo.This project aims to develop a functional Virtual Reality application for the rehabilitation and well-being of older adults in nursing homes. It intends to engage the patient in the rehabilitation treatment by means of Virtual Reality games. To play these games, the patient must execute repetitive movements while moving around in an immersive natural environment.Objectius de Desenvolupament Sostenible::3 - Salut i Benesta

    Design and implementation of 3D buildings integration for a Webgl-Based Virtual Globe: a case study of Valencian Cadastre and Fide Building Mode

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Since nowadays Web applications are increasingly providing plenty of creative and interesting services relying on new standards and more powerful computers, it becomes important to create similar applications, to process and visualize geographic data taking advantage of such groundings. In this context, it results interesting to develop new Web-based geo-processing based on a 3D data representation, exploiting the recent WebGL graphic specification from a client-side point of view. This research explains the novel way in which whole Valencian cadastre was analyzed, processed and finally represented into a WebGL-based virtual globe. These improvements provide end-users firstly, an optimization of computer graphics performance, by natively accessing to graphics instructions; and secondly a functional data management and representation for the present and forthcoming geo-processing Web-based platform

    Placing Birds On A Dynamic Evolutionary Map: Using Digital Tools To Update The Evolutionary Metaphor Of The Tree Of Life

    Get PDF
    This dissertation describes and presents a new type of interactive visualization for communicating about evolutionary biology, the dynamic evolutionary map. This web-based tool utilizes a novel map-based metaphor to visualize evolution, rather than the traditional tree of life. The dissertation begins with an analysis of the conceptual affordances of the traditional tree of life as the dominant metaphor for evolution. Next, theories from digital media, visualization, and cognitive science research are synthesized to support the assertion that digital media tools can extend the types of visual metaphors we use in science communication in order to overcome conceptual limitations of traditional metaphors. These theories are then applied to a specific problem of science communication, resulting in the dynamic evolutionary map. Metaphor is a crucial part of scientific communication, and metaphor-based scientific visualizations, models, and analogies play a profound role in shaping our ideas about the world around us. Users of the dynamic evolutionary map interact with evolution in two ways: by observing the diversification of bird orders over time and by examining the evidence for avian evolution at several places in evolutionary history. By combining these two types of interaction with a non-traditional map metaphor, evolution is framed in a novel way that supplements traditional metaphors for communicating about evolution. This reframing in turn suggests new conceptual affordances to users who are learning about evolution. Empirical testing of the dynamic evolutionary map by biology novices suggests that this approach is successful in communicating evolution differently than in existing tree-based visualization methods. Results of evaluation of the map by biology experts suggest possibilities for future enhancement and testing of this visualization that would help refine these successes. This dissertation represents an important step forward in the synthesis of scientific, design, and metaphor theory, as applied to a specific problem of science communication. The dynamic evolutionary map demonstrates that these theories can be used to guide the construction of a visualization for communicating a scientific concept in a way that is both novel and grounded in theory. There are several potential applications in the fields of informal science education, formal education, and evolutionary biology for the visualization created in this dissertation. Moreover, the approach suggested in this dissertation can potentially be extended into other areas of science and science communication. By placing birds onto the dynamic evolutionary map, this dissertation points to a way forward for visualizing science communication in the futur

    An Investigation of Cognitive Implications in the Design of Computer Games

    Get PDF
    Computer games have been touted for their ability to engage players in cognitive activities (e.g., decision making, learning, planning, problem solving). By ‘computer game’ we mean any game that uses computational technology as its platform, regardless of the actual hardware or software; games on personal computers, tablets, game consoles, cellphones, or specialized equipment can all be called computer games. However, there remains much uncertainty regarding how to design computer games so that they support, facilitate, and promote the reflective, effortful, and conscious performance of cognitive activities. The goal of this dissertation is to relieve some of this uncertainty, so that the design of such computer games can become more systematic and less ad hoc. By understanding how different components of a computer game influence the resulting cognitive system, we can more consciously and systematically design computer games for the desired cognitive support. This dissertation synthesizes concepts from cognitive science, information science, learning science, human-computer interaction, and game design to create a conceptual design framework. The framework particularly focuses on the design of: gameplay, the player-game joint cognitive system, the interaction that mediates gameplay and the cognitive system, and the components of this interaction. Furthermore, this dissertation also includes a process by which researchers can explore the relationship between components of a computer game and the resulting cognitive system in a consistent, controlled, and precise manner. Using this process, three separate studies were conducted to provide empirical support for different aspects of the framework; these studies investigated how the design of rules, visual interface, and the core mechanic influence the resulting cognitive system. Overall then, the conceptual framework and three empirical studies presented in this dissertation provide designers with a greater understanding of how to systematically design computer games to provide the desired support for any cognitive activity
    corecore