897 research outputs found

    Socially aware integrated centralized infrastructure and opportunistic networking: a powerful content dissemination catalyst

    No full text
    The classic centralized infrastructure (CI) exhibits low efficiency in disseminating the content of common interest across its requesters. In order to overcome the limitations of CI-based content dissemination, smart mobile devices are capable of activating direct opportunistic communications among mobile users, which returns in integrated cellular and opportunistic networks. During the content dissemination process, the social characteristics of multiple users, including their common interest in the content, their mobility patterns, their social ties, and their altruistic forwarding behaviors, should be carefully considered in order to design an efficient content dissemination scheme. We demonstrate that the integrated network-based content dissemination scheme outperforms its CI-based counterpart in terms of both content delivery ratio and its various energy and delay metrics. Furthermore, the opportunistic network is capable of offloading a large fraction of tele-traffic from the overloaded CI-based network

    Efficient and adaptive congestion control for heterogeneous delay-tolerant networks

    Get PDF
    Detecting and dealing with congestion in delay-tolerant networks (DTNs) is an important and challenging problem. Current DTN forwarding algorithms typically direct traffic towards more central nodes in order to maximise delivery ratios and minimise delays, but as traffic demands increase these nodes may become saturated and unusable. We pro- pose CafRep, an adaptive congestion aware protocol that detects and reacts to congested nodes and congested parts of the network by using implicit hybrid contact and resources congestion heuristics. CafRep exploits localised relative utility based approach to offload the traffic from more to less congested parts of the network, and to replicate at adaptively lower rate in different parts of the network with non-uniform congestion levels. We extensively evaluate our work against benchmark and competitive protocols across a range of metrics over three real connectivity and GPS traces such as Sassy [44], San Francisco Cabs [45] and Infocom 2006 [33]. We show that CafRep performs well, independent of network connectivity and mobility patterns, and consistently outperforms the state-of-the-art DTN forwarding algorithms in the face of increasing rates of congestion. CafRep maintains higher availability and success ratios while keeping low delays, packet loss rates and delivery cost. We test CafRep in the presence of two application scenarios, with fixed rate traffic and with real world Facebook application traffic demands, showing that regardless of the type of traffic CafRep aims to deliver, it reduces congestion and improves forwarding performance

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Previous hop routing: exploiting opportunism in VANETs

    Get PDF
    Routing in highly dynamic wireless networks such as Vehicular Ad-hoc Networks (VANETs) is a challenging task due to frequent topology changes. Sustaining a transmission path between peers in such network environment is difficult. In this thesis, Previous Hop Routing (PHR) is poposed; an opportunistic forwarding protocol exploiting previous hop information and distance to destination to make the forwarding decision on a packet-by-packet basis. It is intended for use in highly dynamic network where the life time of a hop-by-hop path between source and destination nodes is short. Exploiting the broadcast nature of wireless communication avoids the need to copy packets, and enables redundant paths to be formed. To save network resources, especially under high network loads, PHR employs probabilistic forwarding. The forwarding probability is calculated based on the perceived network load as measured by the arrival rate at the network interface. We evaluate PHR in an urban VANET environment using NS2 (for network traffic) and SUMO (for vehicular movement) simulators, with scenarios configured to re ect real-world conditions. The simulation scenarios are configured to use two velocity profiles i.e. Low and high velocity. The results show that the PHR networks able to achieve best performance as measured by Packet Delivery Ratio (PDR) and Drop Burst Length (DBL) compared to conventional routing protocols in high velocity scenarios

    LEVERAGING PEER-TO-PEER ENERGY SHARING FOR RESOURCE OPTIMIZATION IN MOBILE SOCIAL NETWORKS

    Get PDF
    Mobile Opportunistic Networks (MSNs) enable the interaction of mobile users in the vicinity through various short-range wireless communication technologies (e.g., Bluetooth, WiFi) and let them discover and exchange information directly or in ad hoc manner. Despite their promise to enable many exciting applications, limited battery capacity of mobile devices has become the biggest impediment to these appli- cations. The recent breakthroughs in the areas of wireless power transfer (WPT) and rechargeable lithium batteries promise the use of peer-to-peer (P2P) energy sharing (i.e., the transfer of energy from the battery of one member of the mobile network to the battery of the another member) for the efficient utilization of scarce energy resources in the network. However, due to uncertain mobility and communication opportunities in the network, resource optimization in these opportunistic networks is very challenging. In this dissertation, we study energy utilization in three different applications in Mobile Social Networks and target to improve the energy efficiency in the network by benefiting from P2P energy sharing among the nodes. More specifi- xi cally, we look at the problems of (i) optimal energy usage and sharing between friendly nodes in order to reduce the burden of wall-based charging, (ii) optimal content and energy sharing when energy is considered as an incentive for carrying the content for other nodes, and (iii) energy balancing among nodes for prolonging the network lifetime. We have proposed various novel protocols for the corresponding applications and have shown that they outperform the state-of-the-art solutions and improve the energy efficiency in MSNs while the application requirements are satisfied

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Contributions to modeling, structural analysis, and routing performance in dynamic networks

    Get PDF
    Cette thèse apporte des contributions à la modélisation, compréhension ainsi qu’à la communication efficace d’information dans les réseaux dynamiques peuplant la périphérie de l’Internet. Par réseaux dynamiques, nous signifions les réseaux pouvant être modélisés par des graphes dynamiques dans lesquels noeuds et liens évoluent temporellement. Dans la première partie de la thèse, nous proposons un nouveau modèle de mobilité - STEPS - qui permet de capturer un large spectre de comportement de mobilité humains. STEPS mets en oeuvre deux principes fondamentaux de la mobilité humaine : l’attachement préférentiel à une zone de prédilection et l’attraction vers une zone de prédilection. Nous proposons une modélisation markovienne de ce modèle de mobilité. Nous montrons que ce simple modèle paramétrique est capable de capturer les caractéristiques statistiques saillantes de la mobilité humaine comme la distribution des temps d’inter-contacts et de contacts. Dans la deuxième partie, en utilisant STEPS, nous analysons les propriétés comportementales et structurelles fondamentales des réseaux opportunistes. Nous redéfinissons dans le contexte des réseaux dynamiques la notion de structure petit monde et montrons comment une telle structure peut émerger. En particulier, nous montrons que les noeuds fortement dynamiques peuvent jouer le rôle de ponts entre les composants déconnectés, aident à réduire significativement la longueur du chemin caractéristique du réseau et contribuent à l’émergence du phénomène petit-monde dans les réseaux dynamiques. Nous proposons une façon de modéliser ce phénomène sous STEPS. À partir d’un réseau dynamique régulier dans lequel les noeuds limitent leur mobilité à leurs zones préférentielles respectives. Nous recablons ce réseau en injectant progressivement des noeuds nomades se déplaçant entre plusieurs zones. Nous montrons que le pourcentage de tels nœuds nomades est de 10%, le réseau possède une structure petit monde avec un fort taux de clusterisation et un faible longueur du chemin caractéristique. La troisième contribution de cette thèse porte sur l’étude de l’impact du désordre et de l’irrégularité des contacts sur la capacité de communication d’un réseau dynamique. Nous analysons le degré de désordre de réseaux opportunistes réels et montrons que si exploité correctement, celui-ci peut améliorer significativement les performances du routage. Nous introduisons ensuite un modèle permettant de capturer le niveau de désordre d’un réseau dynamique. Nous proposons deux algorithmes simples et efficaces qui exploitent la structure temporelle d’un réseau dynamique pour délivrer les messages avec un bon compromis entre l’usage des ressources et les performances. Les résultats de simulations et analytiques montrent que ce type d’algorithme est plus performant que les approches classiques. Nous mettons également en évidence aussi la structure de réseau pour laquelle ce type d’algorithme atteint ses performances optimum. Basé sur ce résultat théorique nous proposons un nouveau protocole de routage efficace pour les réseaux opportunistes centré sur le contenu. Dans ce protocole, les noeuds maintiennent, via leurs contacts opportunistes, une fonction d’utilité qui résume leur proximité spatio-temporelle par rapport aux autres noeuds. En conséquence, router dans un tel contexte se résume à suivre le gradient de plus grande pente conduisant vers le noeud destination. Cette propriété induit un algorithme de routage simple et efficace qui peut être utilisé aussi bien dans un contexte d’adressage IP que de réseau centré sur les contenus. Les résultats de simulation montrent que ce protocole superforme les protocoles de routage classiques déjà définis pour les réseaux opportunistes. La dernière contribution de cette thèse consiste à mettre en évidence une application potentielle des réseaux dynamiques dans le contexte du « mobile cloud computing ». En utilisant les techniques d’optimisation particulaires, nous montrons que la mobilité peut augmenter considérablement la capacité de calcul des réseaux dynamiques. De plus, nous montrons que la structure dynamique du réseau a un fort impact sur sa capacité de calcul. ABSTRACT : This thesis contributes to the modeling, understanding and efficient communication in dynamic networks populating the periphery of the Internet. By dynamic networks, we refer to networks that can be modeled by dynamic graphs in which nodes and links change temporally. In the first part of the thesis, we propose a new mobility model - STEPS - which captures a wide spectrum of human mobility behavior. STEPS implements two fundamental principles of human mobility: preferential attachment and attractor. We show that this simple parametric model is able to capture the salient statistical properties of human mobility such as the distribution of inter-contact/contact time. In the second part, using STEPS, we analyze the fundamental behavioral and structural properties of opportunistic networks. We redefine in the context of dynamic networks the concept of small world structure and show how such a structure can emerge. In particular, we show that highly dynamic nodes can play the role of bridges between disconnected components, helping to significantly reduce the length of network path and contribute to the emergence of small-world phenomenon in dynamic networks. We propose a way to model this phenomenon in STEPS. From a regular dynamic network in which nodes limit their mobility to their respective preferential areas. We rewire this network by gradually injecting highly nomadic nodes moving between different areas. We show that when the ratio of such nomadic nodes is around 10%, the network has small world structure with a high degree of clustering and a low characteristic path length. The third contribution of this thesis is the study of the impact of disorder and contact irregularity on the communication capacity of a dynamic network. We analyze the degree of disorder of real opportunistic networks and show that if used correctly, it can significantly improve routing performances. We then introduce a model to capture the degree of disorder in a dynamic network. We propose two simple and efficient algorithms that exploit the temporal structure of a dynamic network to deliver messages with a good tradeoff between resource usage and performance. The simulation and analytical results show that this type of algorithm is more efficient than conventional approaches. We also highlight also the network structure for which this type of algorithm achieves its optimum performance. Based on this theoretical result, we propose a new efficient routing protocol for content centric opportunistic networks. In this protocol, nodes maintain, through their opportunistic contacts, an utility function that summarizes their spatio-temporal proximity to other nodes. As a result, routing in this context consists in following the steepest slopes of the gradient field leading to the destination node. This property leads to a simple and effective algorithm routing that can be used both in the context of IP networks and content centric networks. The simulation results show that this protocol outperforms traditional routing protocols already defined for opportunistic networks. The last contribution of this thesis is to highlight the potential application of dynamic networks in the context of "mobile cloud computing." Using the particle optimization techniques, we show that mobility can significantly increase the processing capacity of dynamic networks. In addition, we show that the dynamic structure of the network has a strong impact on its processing capacity
    • …
    corecore