463 research outputs found

    Band-Passing Nonlinearity in Reset Elements

    Full text link
    This paper addresses nonlinearity in reset elements and their effects. Reset elements are known for having less phase lag compared to their linear counterparts; however, they are nonlinear elements and produce higher-order harmonics. This paper investigates the higher-order harmonics for reset elements with one resetting state and proposes an architecture and a method of design which allows for band-passing the nonlinearity and its effects, namely, higher-order harmonics and phase advantage. The nonlinearity of reset elements is not entirely useful for all frequencies, e.g., they are useful for reducing phase lag at cross-over frequency region; however, higher-order harmonics can compromise tracking and disturbance rejection performance at lower frequencies. Using proposed "phase shaping" method, one can selectively suppress nonlinearity of a single-state reset element in a desired range of frequencies and allow the nonlinearity to provide its phase benefit in a different desired range of frequencies. This can be especially useful for the reset elements in the framework of "Constant in gain, Lead in phase" (CgLp) filter, which is a newly introduced nonlinear filter, bound to circumvent the well-known linear control limitation -- the waterbed effect

    Design and control of a synchronous reluctance machine drive

    Get PDF
    This thesis investigates the design, performance and control of a synchronous reluctance machine (Synchrel) drive. The Synchrel machine is proposed for variable speed drives because of its advantages over other machines. The rotor has no cage winding, brushes or slip rings. The torque ripple levels are lower in the Synchrel machine than the switched reluctance machine as it operates from a standard sine wave supply. An axially laminated rotor was designed based on finite element analysis, with the aim of producing the same output power as obtained from an induction motor (M) with a similar stator. Using vector control, the developed torque is controlled by regulating the stator current vector. Two vector control schemes are used, maximum torque per ampere and constant current in the direct axis. The output torque characteristics of the machine have been confirmed by finite element analysis. Slotine's approach of sliding mode control is used for position control of the vector controlled synchronous reluctance machine. A comparison is undertaken between the performance of a fixed gain controller with two sliding mode controllers, for both the regulator and servo cases. Invariant performance is obtained using Slotine's sliding mode control approach, unlike with a fixed gain controller. Robustness to parameter variation is an important feature of this technique. This robustness can be achieved through the control law design, assuming parameter variation bounds are known. These improvements are demonstrated for variations in load inertia. Inductance ripple affects machine performance, for example decreasing output torque and increasing core losses. A state space model for the machine that incorporates this inductance effect, yields drive simulation results that agree with experimental results

    Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging

    Get PDF
    Quantitative photoacoustic imaging (qPAI) has the potential to provide high- resolution in vivo images of chromophore concentration, which may be indicative of tissue function and pathology. Many strategies have been proposed recently for extracting quantitative information, but many have not been experimentally verified. Experimental phantom-based validation studies can be used to test the robustness and accuracy of such algorithms in order to ensure reliable in vivo application is possible. The phantoms used in such studies must have well-characterised optical and acoustic properties similar to tissue, and be versatile and stable. Polyvinyl chloride plastisol (PVCP) has been suggested as a phantom for quality control and system evaluation. By characterising its multiwavelength optical properties, broadband acoustic properties and thermoelastic behaviour, this paper examines its potential as a phantom for qPAI studies too. PVCP's acoustic properties were assessed for various formulations, as well as its intrinsic optical absorption, and scattering with added TiO2, over a range of wavelengths from 400-2000 nm. To change the absorption coefficient, pigment-based chromophores that are stable during the phantom fabrication process, were used. These yielded unique spectra analogous to tissue chromophores and linear with concentration. At the high peak powers typically used in photoacoustic imaging, nonlinear optical absorption was observed. The Grüneisen parameter was measured to be Γ\Gamma   =  1.01  ±  0.05, larger than typically found in tissue, though useful for increased PA signal. Single and multiwavelength 3D PA imaging of various fabricated PVCP phantoms were demonstrated

    Adaptive protection and control for wide-area blackout prevention

    Get PDF
    Technical analyses of several recent power blackouts revealed that a group of generators going out-of-step with the rest of the power system is often a precursor of a complete system collapse. Out-of-step protection is designed to assess the stability of the evolving swing after a disturbance and take control action accordingly. However, the settings of out-of-step relays are found to be unsatisfactory due to the fact that the electromechanical swings that occurred during relay commissioning are different in practice. These concerns motivated the development of a novel approach to recalculate the out-of-step protection settings to suit the prevalent operating condition. With phasor measurement unit (PMU) technology, it is possible to adjust the setting of out-of-step relay in real-time. The setting of out-of-step relay is primarily determined by three dynamic parameters: direct axis transient reactance, quadrature axis speed voltage and generator inertia. In a complex power network, these parameters are the dynamic parameters of an equivalent model of a coherent group of generators. Hence, it is essential to identify the coherent group of generators and estimate the dynamic model parameters of each generator in the system first in order to form the dynamic model equivalent in the system. The work presented in this thesis develops a measurement-based technique to identify the coherent areas of power system network by analysing the measured data obtained from the system. The method is based on multivariate analysis of the signals, using independent component analysis (ICA). Also, a technique for estimating the dynamic model parameters of the generators in the system has been developed. The dynamic model parameters of synchronous generators are estimated by processing the PMU measurements using unscented Kalman filter (UKF).Open Acces
    • …
    corecore