22 research outputs found

    Annual Report 1958-1959

    Get PDF
    It contains the statement of R&D works undertaken, achivement made and the expenditure by the laboratory during the financial year 1958-195

    Jigging : a review of fundamentals and future directions

    Get PDF
    For centuries, jigging has been a workhorse of the mineral processing industry. Recently, it has also found its way into the recycling industry, and the increasing concerns related to water usage has led to a renewed interest in dry jigging. However, the current scenario of increasing ore complexity and the advent of smart sensor technologies, such as sensor-based sorting (SBS), has established increasingly challenging levels for traditional concentration methods, such as jigging. Against this background, the current review attempts to summarize and refresh the key aspects and concepts about jigging available in the literature. The configuration, operational features, applications, types, and theoretical models of jigging are comprehensively reviewed. Three promising paths for future research are presented: (1) using and adapting concepts from granular physics in fundamental studies about the stratification phenomena in jigs; (2) implementing advanced control functions by using machine vision and multivariate data analysis and; (3) further studies to unlock the potential of dry jigs. Pursuing these and other innovations are becoming increasingly essential to keep the role of jigging as a valuable tool in future industry

    Annual Report 1978-1979

    Get PDF
    It contains the statement of R&D works undertaken, achivement made and the expenditure by the laboratory during the financial year 1978-1979

    KOREAN ANTHRACITE COAL CLEANING BY MEANS OF DRY AND WET BASED SEPARATION TECHNOLOGIES

    Get PDF
    Korean coals are typically high rank anthracite characterized by high ash content and difficult cleaning characteristics. The main objective of the study was to evaluate the feasibility of treating various size fractions within the coal using an assortment of physical coal cleaning technologies. Dry cleaning is preferred due to the friability of the coal. As such, three pneumatic processes were tested including Ore Sorting for the plus 10 mm material, Air Table Separation for 10 x 1 mm fraction and Tribo-electric Separator for - 1 mm fraction. The Dense Medium Cyclone is known to be one of the most efficient separation processes and thus was evaluated for the cleaning of 10 x 1 mm coal. To realize the optimum performances from the Air Table and Rotary Tribo-electric Separator, their operational variables were systematically studied using a parametric experimental design. In addition, the dense medium cyclone and X-ray Transmission Sorting trials were performed under various medium densities and separation settings, respectively. A comparison of the cleaning performance revealed that the Dense Medium Cyclone and X-ray Transmission Sorting proved to provide the most effective results with maximum ash rejection and combustible recovery. The tribo-electric separation process was ineffective while the air table provided modest ash reduction potential
    corecore