3,769 research outputs found

    Invasive Species Forecasting System: A Decision Support Tool for the U.S. Geological Survey: FY 2005 Benchmarking Report v.1.6

    Get PDF
    The National Institute of Invasive Species Science (NIISS), through collaboration with NASA's Goddard Space Flight Center (GSFC), recently began incorporating NASA observations and predictive modeling tools to fulfill its mission. These enhancements, labeled collectively as the Invasive Species Forecasting System (ISFS), are now in place in the NIISS in their initial state (V1.0). The ISFS is the primary decision support tool of the NIISS for the management and control of invasive species on Department of Interior and adjacent lands. The ISFS is the backbone for a unique information services line-of-business for the NIISS, and it provides the means for delivering advanced decision support capabilities to a wide range of management applications. This report describes the operational characteristics of the ISFS, a decision support tool of the United States Geological Survey (USGS). Recent enhancements to the performance of the ISFS, attained through the integration of observations, models, and systems engineering from the NASA are benchmarked; i.e., described quantitatively and evaluated in relation to the performance of the USGS system before incorporation of the NASA enhancements. This report benchmarks Version 1.0 of the ISFS

    Visualizing Project Life-Cycle Data in a Hybrid Dashboard for Federal Capital Projects

    Get PDF
    Capital project owners face several challenges in extracting meaningful information from large and complex data sets generated throughout the life cycle of a construction project. Capital projects must strike a balance between intuition-driven and data-driven decision-making due to their sensitive and change-averse nature. The main objective of this study is to improve the structure, clarity, and interpretation of the construction data, and enhance the decision-making processes for federal capital projects. To achieve this goal, this study developed a hybrid dashboard tailored to the federal agencies’ requirements of performance assessment. This study is a sub-section of broader research – the Federal Facilities Data Analytics Research Application Program (FF-DARAP). The sub-objectives of this study focused on identifying essential performance metrics and the most effective visual aids that communicate the accurate value of the metrics. This study employed a roundtable discussion, survey questionnaires, and semi-structured interviews as methods of data collection. The collected data was analyzed using methods such as mean score calculation and thematic analysis. As a result, two iterations of a prototype dashboard were created using Microsoft PowerBI and tested for usability satisfaction. The usability assessment was conducted using the CSUQ survey instrument by IBM and the iteration with a better score was recommended to the federal agencies for final deployment. The results of this study indicate that a well-designed dashboard can be a powerful tool for performance assessment and benchmarking and human factors considerations play an important role in this process. This study discusses the detailed approach to dashboard development; however, the content of the dashboard is unique to the federal agencies, therefore its generalizability is limited. Furthermore, the scope of this study only focuses on creating a strategic and analytical dashboard, therefore the design considerations may not be applicable to operational dashboards

    Controller workload, airspace capacity and future systems.

    No full text
    In air traffic control (ATC), controller workload – or controller mental workload – is an extremely important topic. There have been many research studies, reports and reviews on workload (as it will be referred to here). Indeed, the joke is that researchers will produce ‘reviews of reviews’ (Stein, 1998). The present document necessarily has something of that flavour, and does review many of the ‘breakthrough’ research results, but there is a concentration on some specific questions about workload

    HLSDataset: Open-Source Dataset for ML-Assisted FPGA Design using High Level Synthesis

    Full text link
    Machine Learning (ML) has been widely adopted in design exploration using high level synthesis (HLS) to give a better and faster performance, and resource and power estimation at very early stages for FPGA-based design. To perform prediction accurately, high-quality and large-volume datasets are required for training ML models.This paper presents a dataset for ML-assisted FPGA design using HLS, called HLSDataset. The dataset is generated from widely used HLS C benchmarks including Polybench, Machsuite, CHStone and Rossetta. The Verilog samples are generated with a variety of directives including loop unroll, loop pipeline and array partition to make sure optimized and realistic designs are covered. The total number of generated Verilog samples is nearly 9,000 per FPGA type. To demonstrate the effectiveness of our dataset, we undertake case studies to perform power estimation and resource usage estimation with ML models trained with our dataset. All the codes and dataset are public at the github repo.We believe that HLSDataset can save valuable time for researchers by avoiding the tedious process of running tools, scripting and parsing files to generate the dataset, and enable them to spend more time where it counts, that is, in training ML models.Comment: 8 pages, 5 figure

    1st EFORT European Consensus: Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices

    Get PDF
    Innovations in Orthopaedics and Traumatology have contributed to the achievement of a high-quality level of care in musculoskeletal disorders and injuries over the past decades. The applications of new implants as well as diagnostic and therapeutic techniques in addition to implementation of clinical research, have significantly improved patient outcomes, reduced complication rates and length of hospital stay in many areas. However, the regulatory framework is extensive, and there is a lack of understanding and clarity in daily practice what the meaning of clinical & pre‐clinical evidence as required by the MDR is. Thus, understanding and clarity are of utmost importance for introduction of new implants and implant-related instrumentation in combination with surgical technique to ensure a safe use of implants and treatment of patients. Therefore EFORT launched IPSI, The Implant and Patient Safety Initiative, which starting from an inaugural workshop in 2021 issued a set of recommendations, notably through a subsequent Delphi Process involving the National Member Societies of EFORT, European Specialty Societies as well as International Experts. These recommendations provide surgeons, researchers, implant manufacturers as well as patients and health authorities with a consensus of the development, implementation, and dissemination of innovation in the field of arthroplasty. The intended key outcomes of this 1st EFORT European Consensus on “Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices”are consented, practical pathways to maintain innovation and optimisation of orthopaedic products and workflows within the boundaries of MDR 2017/745. Open Access practical guidelines based on adequate, state of the art pre-clinical and clinical evaluation methodologies for the introduction of joint replacements and implant-related instrumentation shall provide hands-on orientation for orthopaedic surgeons, research institutes and laboratories, orthopaedic device manufacturers, Notified Bodies but also for National Institutes and authorities, patient representatives and further stakeholders. We would like to acknowledge and thank the Scientific Committee members, all International Expert Delegates, the Delegates from European National & Specialty Societies and the Editorial Team for their outstanding contributions and support during this EFORT European Consensus

    Metrics and Tools to Guide Design of Graphical User Interfaces

    Get PDF
    User interface design metrics assist developers evaluate interface designs in early phase before delivering the software to end users. This dissertation presents a metric-based tool called GUIEvaluator for evaluating the complexity of the user interface based on its structure. The metrics-model consists of five modified structural measures of interface complexity: Alignment, grouping, size, density, and balance. The results of GUIEvaluator are discussed in comparison with the subjective evaluations of interface layouts and the existing complexity metrics-models. To extend this metrics-model, the Screen-Layout Cohesion (SLC) metric has been proposed. This metric is used to evaluate the usability of user interfaces. The SLC metric has been developed based on Aesthetic, structural, and semantic aspects of GUIs. To provide the SLC calculation, a complementary tool has been developed, which is called GUIExaminer. This dissertation demonstrates the potential of incorporating automated complexity and cohesion metrics into the user interface design process. The findings show that a strong positive correlation between the subjective evaluation and both the GUIEvaluator and GUIExaminer, at a significance level 0.05. Moreover, the findings provide evidence of the effectiveness of the GUIEvaluator and GUIExaminer to predict the best user interface design among a set of alternative user interfaces. In addition, the findings show that the GUIEvaluator and GUIExaminer can measure some usability aspects of a given user interface. However, the metrics validation proves the usefulness of GUIEvaluator and GUIExaminer for evaluating user interface designs

    Design & Development of Web-based Information Systems for Port Operations

    Get PDF
    • …
    corecore