665 research outputs found

    Machine learning for managing structured and semi-structured data

    Get PDF
    As the digitalization of private, commercial, and public sectors advances rapidly, an increasing amount of data is becoming available. In order to gain insights or knowledge from these enormous amounts of raw data, a deep analysis is essential. The immense volume requires highly automated processes with minimal manual interaction. In recent years, machine learning methods have taken on a central role in this task. In addition to the individual data points, their interrelationships often play a decisive role, e.g. whether two patients are related to each other or whether they are treated by the same physician. Hence, relational learning is an important branch of research, which studies how to harness this explicitly available structural information between different data points. Recently, graph neural networks have gained importance. These can be considered an extension of convolutional neural networks from regular grids to general (irregular) graphs. Knowledge graphs play an essential role in representing facts about entities in a machine-readable way. While great efforts are made to store as many facts as possible in these graphs, they often remain incomplete, i.e., true facts are missing. Manual verification and expansion of the graphs is becoming increasingly difficult due to the large volume of data and must therefore be assisted or substituted by automated procedures which predict missing facts. The field of knowledge graph completion can be roughly divided into two categories: Link Prediction and Entity Alignment. In Link Prediction, machine learning models are trained to predict unknown facts between entities based on the known facts. Entity Alignment aims at identifying shared entities between graphs in order to link several such knowledge graphs based on some provided seed alignment pairs. In this thesis, we present important advances in the field of knowledge graph completion. For Entity Alignment, we show how to reduce the number of required seed alignments while maintaining performance by novel active learning techniques. We also discuss the power of textual features and show that graph-neural-network-based methods have difficulties with noisy alignment data. For Link Prediction, we demonstrate how to improve the prediction for unknown entities at training time by exploiting additional metadata on individual statements, often available in modern graphs. Supported with results from a large-scale experimental study, we present an analysis of the effect of individual components of machine learning models, e.g., the interaction function or loss criterion, on the task of link prediction. We also introduce a software library that simplifies the implementation and study of such components and makes them accessible to a wide research community, ranging from relational learning researchers to applied fields, such as life sciences. Finally, we propose a novel metric for evaluating ranking results, as used for both completion tasks. It allows for easier interpretation and comparison, especially in cases with different numbers of ranking candidates, as encountered in the de-facto standard evaluation protocols for both tasks.Mit der rasant fortschreitenden Digitalisierung des privaten, kommerziellen und öffentlichen Sektors werden immer größere Datenmengen verfügbar. Um aus diesen enormen Mengen an Rohdaten Erkenntnisse oder Wissen zu gewinnen, ist eine tiefgehende Analyse unerlässlich. Das immense Volumen erfordert hochautomatisierte Prozesse mit minimaler manueller Interaktion. In den letzten Jahren haben Methoden des maschinellen Lernens eine zentrale Rolle bei dieser Aufgabe eingenommen. Neben den einzelnen Datenpunkten spielen oft auch deren Zusammenhänge eine entscheidende Rolle, z.B. ob zwei Patienten miteinander verwandt sind oder ob sie vom selben Arzt behandelt werden. Daher ist das relationale Lernen ein wichtiger Forschungszweig, der untersucht, wie diese explizit verfügbaren strukturellen Informationen zwischen verschiedenen Datenpunkten nutzbar gemacht werden können. In letzter Zeit haben Graph Neural Networks an Bedeutung gewonnen. Diese können als eine Erweiterung von CNNs von regelmäßigen Gittern auf allgemeine (unregelmäßige) Graphen betrachtet werden. Wissensgraphen spielen eine wesentliche Rolle bei der Darstellung von Fakten über Entitäten in maschinenlesbaren Form. Obwohl große Anstrengungen unternommen werden, so viele Fakten wie möglich in diesen Graphen zu speichern, bleiben sie oft unvollständig, d. h. es fehlen Fakten. Die manuelle Überprüfung und Erweiterung der Graphen wird aufgrund der großen Datenmengen immer schwieriger und muss daher durch automatisierte Verfahren unterstützt oder ersetzt werden, die fehlende Fakten vorhersagen. Das Gebiet der Wissensgraphenvervollständigung lässt sich grob in zwei Kategorien einteilen: Link Prediction und Entity Alignment. Bei der Link Prediction werden maschinelle Lernmodelle trainiert, um unbekannte Fakten zwischen Entitäten auf der Grundlage der bekannten Fakten vorherzusagen. Entity Alignment zielt darauf ab, gemeinsame Entitäten zwischen Graphen zu identifizieren, um mehrere solcher Wissensgraphen auf der Grundlage einiger vorgegebener Paare zu verknüpfen. In dieser Arbeit stellen wir wichtige Fortschritte auf dem Gebiet der Vervollständigung von Wissensgraphen vor. Für das Entity Alignment zeigen wir, wie die Anzahl der benötigten Paare reduziert werden kann, während die Leistung durch neuartige aktive Lerntechniken erhalten bleibt. Wir erörtern auch die Leistungsfähigkeit von Textmerkmalen und zeigen, dass auf Graph-Neural-Networks basierende Methoden Schwierigkeiten mit verrauschten Paar-Daten haben. Für die Link Prediction demonstrieren wir, wie die Vorhersage für unbekannte Entitäten zur Trainingszeit verbessert werden kann, indem zusätzliche Metadaten zu einzelnen Aussagen genutzt werden, die oft in modernen Graphen verfügbar sind. Gestützt auf Ergebnisse einer groß angelegten experimentellen Studie präsentieren wir eine Analyse der Auswirkungen einzelner Komponenten von Modellen des maschinellen Lernens, z. B. der Interaktionsfunktion oder des Verlustkriteriums, auf die Aufgabe der Link Prediction. Außerdem stellen wir eine Softwarebibliothek vor, die die Implementierung und Untersuchung solcher Komponenten vereinfacht und sie einer breiten Forschungsgemeinschaft zugänglich macht, die von Forschern im Bereich des relationalen Lernens bis hin zu angewandten Bereichen wie den Biowissenschaften reicht. Schließlich schlagen wir eine neuartige Metrik für die Bewertung von Ranking-Ergebnissen vor, wie sie für beide Aufgaben verwendet wird. Sie ermöglicht eine einfachere Interpretation und einen leichteren Vergleich, insbesondere in Fällen mit einer unterschiedlichen Anzahl von Kandidaten, wie sie in den de-facto Standardbewertungsprotokollen für beide Aufgaben vorkommen

    IntelliGraphs: Datasets for Benchmarking Knowledge Graph Generation

    Full text link
    Knowledge Graph Embedding (KGE) models are used to learn continuous representations of entities and relations. A key task in the literature is predicting missing links between entities. However, Knowledge Graphs are not just sets of links but also have semantics underlying their structure. Semantics is crucial in several downstream tasks, such as query answering or reasoning. We introduce the subgraph inference task, where a model has to generate likely and semantically valid subgraphs. We propose IntelliGraphs, a set of five new Knowledge Graph datasets. The IntelliGraphs datasets contain subgraphs with semantics expressed in logical rules for evaluating subgraph inference. We also present the dataset generator that produced the synthetic datasets. We designed four novel baseline models, which include three models based on traditional KGEs. We evaluate their expressiveness and show that these models cannot capture the semantics. We believe this benchmark will encourage the development of machine learning models that emphasize semantic understanding

    Leveraging literals for knowledge graph embeddings

    Get PDF
    Wissensgraphen (Knowledge Graphs, KGs) repräsentieren strukturierte Fakten, die sich aus Entitäten und den zwischen diesen bestehenden Relationen zusammensetzen. Um die Effizienz von KG-Anwendungen zu maximieren, ist es von Vorteil, KGs in einen niedrigdimensionalen Vektorraum zu transformieren. KGs folgen dem Paradigma einer offenen Welt (Open World Assumption, OWA), d. h. fehlende Information wird als potenziell möglich angesehen, wodurch ihre Verwendung in realen Anwendungsszenarien oft eingeschränkt wird. Link-Vorhersage (Link Prediction, LP) zur Vervollständigung von KGs kommt daher eine hohe Bedeutung zu. LP kann in zwei unterschiedlichen Modi durchgeführt werden, transduktiv und induktiv, wobei die erste Möglichkeit voraussetzt, dass alle Entitäten der Testdaten in den Trainingsdaten vorhanden sind, während die zweite Möglichkeit auch zuvor nicht bekannte Entitäten in den Testdaten zulässt. Die vorliegende Arbeit untersucht die Verwendung von Literalen in der transduktiven und induktiven LP, da KGs zahlreiche numerische und textuelle Literale enthalten, die eine wesentliche Semantik aufweisen. Zur Evaluierung dieser LP Methoden werden spezielle Benchmark-Datensätze eingeführt. Insbesondere wird eine neuartige KG Embedding (KGE) Methode, RAILD, vorgeschlagen, die Textliterale zusammen mit kontextuellen Graphinformationen für die LP nutzt. Das Ziel von RAILD ist es, die bestehende Forschungslücke beim Lernen von Embeddings für beim Training ungesehene Relationen zu schließen. Dafür wird eine Architektur vorgeschlagen, die Sprachmodelle (Language Models, LMs) mit Netzwerkembeddings kombiniert. Hierzu erfolgt ein Feintuning von leistungsstarken vortrainierten LMs wie BERT zum Zweck der LP, wobei textuelle Beschreibungen von Entitäten und Relationen genutzt werden. Darüber hinaus wird ein neuer Algorithmus, WeiDNeR, eingeführt, um ein Relationsnetzwerk zu generieren, das zum Erlernen graphbasierter Embeddings von Relationen unter Verwendung eines Netzwerkembeddingsmodells dient. Die Vektorrepräsentationen dieser Relationen werden für die LP kombiniert. Zudem wird ein weiteres neuartiges Embeddingmodell, LitKGE, vorgestellt, das numerische Literale für die transduktive LP verwendet. Es zielt darauf ab, numerische Merkmale für Entitäten durch Graphtraversierung zu erzeugen. Hierfür wird ein weiterer Algorithmus, WeiDNeR_Extended, eingeführt, der ein Netzwerk aus Objekt- und Datentypproperties erzeugt. Aus den aus diesem Netzwerk extrahierten Propertypfaden werden dann numerische Merkmale von Entitäten generiert. Des Weiteren wird der Einsatz eines mehrsprachigen LM zur Kodierung von Entitätenbeschreibungen in verschiedenen natürlichen Sprachen zum Zweck der LP untersucht. Für die Evaluierung der KGE-Modelle wurden die Benchmark-Datensätze LiterallyWikidata und Wikidata68K erstellt. Die vielversprechenden Ergebnisse, die mit den vorgestellten Modellen erzielt wurden, eröffnen interessante Fragestellungen für die zukünftige Forschung auf dem Gebiet der KGEs und ihrer Folgeanwendungen

    Neural Networks forBuilding Semantic Models and Knowledge Graphs

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen677. INGEGNERIA INFORMATInoopenFutia, Giusepp

    Relational learning on temporal knowledge graphs

    Get PDF
    Over the last decade, there has been an increasing interest in relational machine learning (RML), which studies methods for the statistical analysis of relational or graph-structured data. Relational data arise naturally in many real-world applications, including social networks, recommender systems, and computational finance. Such data can be represented in the form of a graph consisting of nodes (entities) and labeled edges (relationships between entities). While traditional machine learning techniques are based on feature vectors, RML takes relations into account and permits inference among entities. Recently, performing prediction and learning tasks on knowledge graphs has become a main topic in RML. Knowledge graphs (KGs) are widely used resources for studying multi-relational data in the form of a directed graph, where each labeled edge describes a factual statement, such as (Munich, locatedIn, Germany). Traditionally, knowledge graphs are considered to represent stationary relationships, which do not change over time. In contrast, event-based multi-relational data exhibits complex temporal dynamics in addition to its multi-relational nature. For example, the political relationship between two countries would intensify because of trade fights; the president of a country may change after an election. To represent the temporal aspect, temporal knowledge graphs (tKGs) were introduced that store a temporal event as a quadruple by extending the static triple with a timestamp describing when this event occurred, i.e. (Barack Obama, visit, India, 2010-11-06). Thus, each edge in the graph has temporal information associated with it and may recur or evolve over time. Among various learning paradigms on KGs, knowledge representation learning (KRL), also known as knowledge graph embedding, has achieved great success. KRL maps entities and relations into low-dimensional vector spaces while capturing semantic meanings. However, KRL approaches have mostly been done for static KGs and lack the ability to utilize rich temporal dynamics available on tKGs. In this thesis, we study state-of-the-art representation learning techniques for temporal knowledge graphs that can capture temporal dependencies across entities in addition to their relational dependencies. We discover representations for two inference tasks, i.e., tKG forecasting and completion. The former is to forecast future events using historical observations up to the present time, while the latter predicts missing links at observed timestamps. For tKG forecasting, we show how to make the reasoning process interpretable while maintaining performance by employing a sequential reasoning process over local subgraphs. Besides, we propose a continuous-depth multi-relational graph neural network with a novel graph neural ordinary differential equation. It allows for learning continuous-time representations of tKGs, especially in cases with observations in irregular time intervals, as encountered in online analysis. For tKG completion, we systematically review multiple benchmark models. We thoroughly investigate the significance of the proposed temporal encoding technique in each model and provide the first unified open-source framework, which gathers the implementations of well-known tKG completion models. Finally, we discuss the power of geometric learning and show that learning evolving entity representations in a product of Riemannian manifolds can better reflect geometric structures on tKGs and achieve better performances than Euclidean embeddings while requiring significantly fewer model parameters

    PGB: A PubMed Graph Benchmark for Heterogeneous Network Representation Learning

    Full text link
    There has been a rapid growth in biomedical literature, yet capturing the heterogeneity of the bibliographic information of these articles remains relatively understudied. Although graph mining research via heterogeneous graph neural networks has taken center stage, it remains unclear whether these approaches capture the heterogeneity of the PubMed database, a vast digital repository containing over 33 million articles. We introduce PubMed Graph Benchmark (PGB), a new benchmark dataset for evaluating heterogeneous graph embeddings for biomedical literature. PGB is one of the largest heterogeneous networks to date and consists of 30 million English articles. The benchmark contains rich metadata including abstract, authors, citations, MeSH terms, MeSH hierarchy, and some other information. The benchmark contains three different evaluation tasks encompassing systematic reviews, node classification, and node clustering. In PGB, we aggregate the metadata associated with the biomedical articles from PubMed into a unified source and make the benchmark publicly available for any future works

    Semantic data integration for supply chain management: with a specific focus on applications in the semiconductor industry

    Get PDF
    Supply Chain Management (SCM) is essential to monitor, control, and enhance the performance of SCs. Increasing globalization and diversity of Supply Chains (SC)s lead to complex SC structures, limited visibility among SC partners, and challenging collaboration caused by dispersed data silos. Digitalization is responsible for driving and transforming SCs of fundamental sectors such as the semiconductor industry. This is further accelerated due to the inevitable role that semiconductor products play in electronics, IoT, and security systems. Semiconductor SCM is unique as the SC operations exhibit special features, e.g., long production lead times and short product life. Hence, systematic SCM is required to establish information exchange, overcome inefficiency resulting from incompatibility, and adapt to industry-specific challenges. The Semantic Web is designed for linking data and establishing information exchange. Semantic models provide high-level descriptions of the domain that enable interoperability. Semantic data integration consolidates the heterogeneous data into meaningful and valuable information. The main goal of this thesis is to investigate Semantic Web Technologies (SWT) for SCM with a specific focus on applications in the semiconductor industry. As part of SCM, End-to-End SC modeling ensures visibility of SC partners and flows. Existing models are limited in the way they represent operational SC relationships beyond one-to-one structures. The scarcity of empirical data from multiple SC partners hinders the analysis of the impact of supply network partners on each other and the benchmarking of the overall SC performance. In our work, we investigate (i) how semantic models can be used to standardize and benchmark SCs. Moreover, in a volatile and unpredictable environment, SC experts require methodical and efficient approaches to integrate various data sources for informed decision-making regarding SC behavior. Thus, this work addresses (ii) how semantic data integration can help make SCs more efficient and resilient. Moreover, to secure a good position in a competitive market, semiconductor SCs strive to implement operational strategies to control demand variation, i.e., bullwhip, while maintaining sustainable relationships with customers. We examine (iii) how we can apply semantic technologies to specifically support semiconductor SCs. In this thesis, we provide semantic models that integrate, in a standardized way, SC processes, structure, and flows, ensuring both an elaborate understanding of the holistic SCs and including granular operational details. We demonstrate that these models enable the instantiation of a synthetic SC for benchmarking. We contribute with semantic data integration applications to enable interoperability and make SCs more efficient and resilient. Moreover, we leverage ontologies and KGs to implement customer-oriented bullwhip-taming strategies. We create semantic-based approaches intertwined with Artificial Intelligence (AI) algorithms to address semiconductor industry specifics and ensure operational excellence. The results prove that relying on semantic technologies contributes to achieving rigorous and systematic SCM. We deem that better standardization, simulation, benchmarking, and analysis, as elaborated in the contributions, will help master more complex SC scenarios. SCs stakeholders can increasingly understand the domain and thus are better equipped with effective control strategies to restrain disruption accelerators, such as the bullwhip effect. In essence, the proposed Sematic Web Technology-based strategies unlock the potential to increase the efficiency, resilience, and operational excellence of supply networks and the semiconductor SC in particular
    corecore