209 research outputs found

    Disambiguating the role of blood flow and global signal with partial information decomposition

    Get PDF
    Global signal (GS) is an ubiquitous construct in resting state functional magnetic resonance imaging (rs-fMRI), associated to nuisance, but containing by definition most of the neuronal signal. Global signal regression (GSR) effectively removes the impact of physiological noise and other artifacts, but at the same time it alters correlational patterns in unpredicted ways. Performing GSR taking into account the underlying physiology (mainly the blood arrival time) has been proven to be beneficial. From these observations we aimed to: 1) characterize the effect of GSR on network-level functional connectivity in a large dataset; 2) assess the complementary role of global signal and vessels; and 3) use the framework of partial information decomposition to further look into the joint dynamics of the global signal and vessels, and their respective influence on the dynamics of cortical areas. We observe that GSR affects intrinsic connectivity networks in the connectome in a non-uniform way. Furthermore, by estimating the predictive information of blood flow and the global signal using partial information decomposition, we observe that both signals are present in different amounts across intrinsic connectivity networks. Simulations showed that differences in blood arrival time can largely explain this phenomenon, while using hemodynamic and calcium mouse recordings we were able to confirm the presence of vascular effects, as calcium recordings lack hemodynamic information. With these results we confirm network-specific effects of GSR and the importance of taking blood flow into account for improving de-noising methods. Additionally, and beyond the mere issue of data denoising, we quantify the diverse and complementary effect of global and vessel BOLD signals on the dynamics of cortical areas

    Beyond fingerprinting: Choosing predictive connectomes over reliable connectomes

    Get PDF
    Recent years have seen a surge of research on variability in functional brain connectivity within and between individuals, with encouraging progress toward understanding the consequences of this variability for cognition and behavior. At the same time, well-founded concerns over rigor and reproducibility in psychology and neuroscience have led many to question whether functional connectivity is sufficiently reliable, and call for methods to improve its reliability. The thesis of this opinion piece is that when studying variability in functional connectivity—both across individuals and within individuals over time—we should use behavior prediction as our benchmark rather than optimize reliability for its own sake. We discuss theoretical and empirical evidence to compel this perspective, both when the goal is to study stable, trait-level differences between people, as well as when the goal is to study state-related changes within individuals. We hope that this piece will be useful to the neuroimaging community as we continue efforts to characterize inter- and intra-subject variability in brain function and build predictive models with an eye toward eventual real-world applications

    Connectome-Based Predictive Modeling of Individual Anxiety

    Get PDF
    Anxiety-related illnesses are highly prevalent in human society. Being able to identify neurobiological markers signaling high trait anxiety could aid the assessment of individuals with high risk for mental illness. Here, we applied connectome-based predictive modeling (CPM) to whole-brain resting-state functional connectivity (rsFC) data to predict the degree of trait anxiety in 76 healthy participants. Using a computational "lesion" approach in CPM, we then examined the weights of the identified main brain areas as well as their connectivity. Results showed that the CPM successfully predicted individual anxiety based on whole-brain rsFC, especially the rsFC between limbic areas and prefrontal cortex. The prediction power of the model significantly decreased from simulated lesions of limbic areas, lesions of the connectivity within limbic areas, and lesions of the connectivity between limbic areas and prefrontal cortex. Importantly, this neural model generalized to an independent large sample (n = 501). These findings highlight important roles of the limbic system and prefrontal cortex in anxiety prediction. Our work provides evidence for the usefulness of connectome-based modeling in predicting individual personality differences and indicates its potential for identifying personality factors at risk for psychopathology

    Tangent functional connectomes uncover more unique phenotypic traits

    Get PDF
    Functional connectomes (FCs) contain pairwise estimations of functional couplings based on pairs of brain regions activity. FCs are commonly represented as correlation matrices that are symmetric positive definite (SPD) lying on or inside the SPD manifold. Since the geometry on the SPD manifold is non-Euclidean, the inter-related entries of FCs undermine the use of Euclidean-based distances. By projecting FCs into a tangent space, we can obtain tangent functional connectomes (tangent-FCs). Tangent-FCs have shown a higher predictive power of behavior and cognition, but no studies have evaluated the effect of such projections with respect to fingerprinting. We hypothesize that tangent-FCs have a higher fingerprint than regular FCs. Fingerprinting was measured by identification rates (ID rates) on test-retest FCs as well as on monozygotic and dizygotic twins. Our results showed that identification rates are systematically higher when using tangent-FCs. Specifically, we found: (i) Riemann and log-Euclidean matrix references systematically led to higher ID rates. (ii) In tangent-FCs, Main-diagonal regularization prior to tangent space projection was critical for ID rate when using Euclidean distance, whereas barely affected ID rates when using correlation distance. (iii) ID rates were dependent on condition and fMRI scan length. (iv) Parcellation granularity was key for ID rates in FCs, as well as in tangent-FCs with fixed regularization, whereas optimal regularization of tangent-FCs mostly removed this effect. (v) Correlation distance in tangent-FCs outperformed any other configuration of distance on FCs or on tangent-FCs across the fingerprint gradient (here sampled by assessing test-retest, Monozygotic and Dizygotic twins). (vi)ID rates tended to be higher in task scans compared to resting-state scans when accounting for fMRI scan length.Comment: 29 pages, 10 figures, 2 table

    Latent Factor Analysis of High-Dimensional Brain Imaging Data

    Get PDF
    Recent advances in neuroimaging study, especially functional magnetic resonance imaging (fMRI), has become an important tool in understanding the human brain. Human cognitive functions can be mapped with the brain functional organization through the high-resolution fMRI scans. However, the high-dimensional data with the increasing number of scanning tasks and subjects pose a challenge to existing methods that wasn’t optimized for high-dimensional imaging data. In this thesis, I develop advanced data-driven methods to help utilize more available sources of information in order to reveal more robust brain-behavior relationship. In the first chapter, I provide an overview of the current related research in fMRI and my contributions to the field. In the second chapter, I propose two extensions to the connectome-based predictive modeling (CPM) method that is able to combine multiple connectomes when building predictive models. The two extensions are both able to generate higher prediction accuracy than using the single connectome or the average of multiple connectomes, suggesting the advantage of incorporating multiple sources of information in predictive modeling. In the third chapter, I improve CPM from the target behavioral measure’s perspective. I propose another two extensions for CPM that are able to combine multiple available behavioral measures into a composite measure for CPM to predict. The derived composite measures are shown to be predicted more accurately than any other single behavioral measure, suggesting a more robust brainbehavior relationship. In the fourth chapter, I propose a nonlinear dimensionality reduction framework to embed fMRI data from multiple tasks into a low-dimensional space. This framework helps reveal the common brain state in the multiple available tasks while also help discover the differences among these tasks. The results also provide valuable insights into the various prediction performance based on connectomes from different tasks. In the fifth chapter, I propose an another hyerbolic geometry-based brain graph edge embedding framework. The framework is based on Poincar´e embedding and is able to more accurately represent edges in the brain graph in a low-dimensional space than traditional Euclidean geometry-based embedding. Utilizing the embedding, we are able to cluster edges of the brain graph into disjoint clusters. The edge clusters can then be used to define overlapping brain networks and the derived metrics like network overlapping number can be used to investigate functional flexibility of each brain region. Overall, these work provide rich data-driven methods that help understand the brain-behavioral relationship through predictive modeling and low-dimensional data representation

    Investigating Neural Substrates of Individual Independence and Interdependence Orientations via Efficiency-based Dynamic Functional Connectivity : A Machine Learning Approach

    Get PDF
    Fundings: Beihang University and Capital Medical University Advanced Innovation Center for Big DataBased Precision Medicine Plan; 10.13039/501100001809-National Natural Science Foundation of China; 10.13039/501100000275-Leverhulme Trust;Peer reviewedPostprin
    corecore