1,658 research outputs found

    A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters

    Get PDF
    In this work, we consider the solution of boundary integral equations by means of a scalable hierarchical matrix approach on clusters equipped with graphics hardware, i.e. graphics processing units (GPUs). To this end, we extend our existing single-GPU hierarchical matrix library hmglib such that it is able to scale on many GPUs and such that it can be coupled to arbitrary application codes. Using a model GPU implementation of a boundary element method (BEM) solver, we are able to achieve more than 67 percent relative parallel speed-up going from 128 to 1024 GPUs for a model geometry test case with 1.5 million unknowns and a real-world geometry test case with almost 1.2 million unknowns. On 1024 GPUs of the cluster Titan, it takes less than 6 minutes to solve the 1.5 million unknowns problem, with 5.7 minutes for the setup phase and 20 seconds for the iterative solver. To the best of the authors' knowledge, we here discuss the first fully GPU-based distributed-memory parallel hierarchical matrix Open Source library using the traditional H-matrix format and adaptive cross approximation with an application to BEM problems

    XWeB: the XML Warehouse Benchmark

    Full text link
    With the emergence of XML as a standard for representing business data, new decision support applications are being developed. These XML data warehouses aim at supporting On-Line Analytical Processing (OLAP) operations that manipulate irregular XML data. To ensure feasibility of these new tools, important performance issues must be addressed. Performance is customarily assessed with the help of benchmarks. However, decision support benchmarks do not currently support XML features. In this paper, we introduce the XML Warehouse Benchmark (XWeB), which aims at filling this gap. XWeB derives from the relational decision support benchmark TPC-H. It is mainly composed of a test data warehouse that is based on a unified reference model for XML warehouses and that features XML-specific structures, and its associate XQuery decision support workload. XWeB's usage is illustrated by experiments on several XML database management systems

    Exploring the Performance Benefit of Hybrid Memory System on HPC Environments

    Full text link
    Hardware accelerators have become a de-facto standard to achieve high performance on current supercomputers and there are indications that this trend will increase in the future. Modern accelerators feature high-bandwidth memory next to the computing cores. For example, the Intel Knights Landing (KNL) processor is equipped with 16 GB of high-bandwidth memory (HBM) that works together with conventional DRAM memory. Theoretically, HBM can provide 5x higher bandwidth than conventional DRAM. However, many factors impact the effective performance achieved by applications, including the application memory access pattern, the problem size, the threading level and the actual memory configuration. In this paper, we analyze the Intel KNL system and quantify the impact of the most important factors on the application performance by using a set of applications that are representative of scientific and data-analytics workloads. Our results show that applications with regular memory access benefit from MCDRAM, achieving up to 3x performance when compared to the performance obtained using only DRAM. On the contrary, applications with random memory access pattern are latency-bound and may suffer from performance degradation when using only MCDRAM. For those applications, the use of additional hardware threads may help hide latency and achieve higher aggregated bandwidth when using HBM
    • …
    corecore