9 research outputs found

    SciTS: A Benchmark for Time-Series Databases in Scientific Experiments and Industrial Internet of Things

    Get PDF
    Time-series data has an increasingly growing usage in Industrial Internet of Things (IIoT) and large-scale scientific experiments. Managing time-series data needs a storage engine that can keep up with their constantly growing volumes while providing an acceptable query latency. While traditional ACID databases favor consistency over performance, many time-series databases with novel storage engines have been developed to provide better ingestion performance and lower query latency. To understand how the unique design of a time-series database affects its performance, we design SciTS, a highly extensible and parameterizable benchmark for time-series data. The benchmark studies the data ingestion capabilities of time-series databases especially as they grow larger in size. It also studies the latencies of 5 practical queries from the scientific experiments use case. We use SciTS to evaluate the performance of 4 databases of 4 distinct storage engines: ClickHouse, InfluxDB, TimescaleDB, and PostgreSQL

    Vergleich von Time Series Databases und Event Stores

    Get PDF
    Aufgrund ihrer aktuellen Bedeutung im Zusammenhang des Internet of Things werden in der vorliegenden Arbeit Time Series Databases und Event Stores miteinander vergli-chen. Ziel ist, die Gemeinsamkeiten und Unterschiede der beiden Arten von Datenbank Management Systemen herauszustellen. Der erste, theoretische Teil des Vergleichs erfolgt anhand der funktionalen Kriterien Speichersystem, Performance und Funktionen sowie der nicht-funktionalen Kriterien Usability und Support. Im zweiten Teil des Vergleichs wird anhand eines konkreten An-wendungsfalls untersucht, ob sich Time Series Databases und Event Stores gleicher-maßen für die Speicherung und in einem zweiten Schritt für die Abfrage von Zeitreihen-daten eignen. Zumal der theoretische Vergleich Unterschiede zwischen einzelnen Time Series Data-bases und Event Stores in Bezug auf die betrachteten Kriterien erkennen lässt, wird für den praktischen Vergleich unter Berücksichtigung der im konkreten Anwendungsfall gegebenen Anforderungen nur die am besten geeignetste Time Series Database (In-fluxDB) und der am besten geeignetste Event Store (Event Store) ausgewählt. Der prak-tische Vergleich zeigt, dass die Zeitreihendaten im konkreten Anwendungsfall zwar in beiden Arten von Datenbank Management Systemen gespeichert werden können, die Nutzung der auf Zeitreihendaten spezialisierten Time Series Database InfluxDB jedoch offensichtliche Vorteile gegenüber dem Event Store aufweist

    Interconnected Services for Time-Series Data Management in Smart Manufacturing Scenarios

    Get PDF
    xvii, 218 p.The rise of Smart Manufacturing, together with the strategic initiatives carried out worldwide, have promoted its adoption among manufacturers who are increasingly interested in boosting data-driven applications for different purposes, such as product quality control, predictive maintenance of equipment, etc. However, the adoption of these approaches faces diverse technological challenges with regard to the data-related technologies supporting the manufacturing data life-cycle. The main contributions of this dissertation focus on two specific challenges related to the early stages of the manufacturing data life-cycle: an optimized storage of the massive amounts of data captured during the production processes and an efficient pre-processing of them. The first contribution consists in the design and development of a system that facilitates the pre-processing task of the captured time-series data through an automatized approach that helps in the selection of the most adequate pre-processing techniques to apply to each data type. The second contribution is the design and development of a three-level hierarchical architecture for time-series data storage on cloud environments that helps to manage and reduce the required data storage resources (and consequently its associated costs). Moreover, with regard to the later stages, a thirdcontribution is proposed, that leverages advanced data analytics to build an alarm prediction system that allows to conduct a predictive maintenance of equipment by anticipating the activation of different types of alarms that can be produced on a real Smart Manufacturing scenario

    Practical Target-Based Synchronization Strategies for Immutable Time-Series Data Tables

    Get PDF
    As the Internet of Things and industrial monitoring of utilities grow, efficiently synchronizing immutable time-series data streams between databases becomes a pressing issue. Extracting data from critical production databases demands careful consideration of the stress imposed on the machines, so synchronization strategies are required to minimize the transfer of duplicate data and the load imposed on remote sources. Literature on the synchronization problem is generalized to arbitrary tables and does not consider the characteristics of time-series data streams, so research was required to investigate methods to quickly synchronize source and target time-series data tables. This thesis examines immutable time-series scenarios and synchronization strategies to answer the following question: given several scenarios, which target-based immutable time-series synchronization strategies best optimize run-time, bandwidth, and accuracy? The strategies explored in this research are implemented into the Meerschaum system, a project intended to leverage these time-series concepts for production deployments. As a practical demonstration, these strategies are used to continuously cache Clemson University’s utilities data

    Interconnected Services for Time-Series Data Management in Smart Manufacturing Scenarios

    Get PDF
    xvii, 218 p.The rise of Smart Manufacturing, together with the strategic initiatives carried out worldwide, have promoted its adoption among manufacturers who are increasingly interested in boosting data-driven applications for different purposes, such as product quality control, predictive maintenance of equipment, etc. However, the adoption of these approaches faces diverse technological challenges with regard to the data-related technologies supporting the manufacturing data life-cycle. The main contributions of this dissertation focus on two specific challenges related to the early stages of the manufacturing data life-cycle: an optimized storage of the massive amounts of data captured during the production processes and an efficient pre-processing of them. The first contribution consists in the design and development of a system that facilitates the pre-processing task of the captured time-series data through an automatized approach that helps in the selection of the most adequate pre-processing techniques to apply to each data type. The second contribution is the design and development of a three-level hierarchical architecture for time-series data storage on cloud environments that helps to manage and reduce the required data storage resources (and consequently its associated costs). Moreover, with regard to the later stages, a thirdcontribution is proposed, that leverages advanced data analytics to build an alarm prediction system that allows to conduct a predictive maintenance of equipment by anticipating the activation of different types of alarms that can be produced on a real Smart Manufacturing scenario

    The use of extended reality and machine learning to improve healthcare and promote greenhealth

    Get PDF
    Com a Quarta Revolução Industrial, a propagação da Internet das Coisas, o avanço nas áreas de Inteligência Artificial e de Machine Learning até à migração para a Computação em Nuvem, o termo "Ambientes Inteligentes" cada vez mais deixa de ser uma idealização para se tornar realidade. Da mesma forma as tecnologias de Realidade Extendida também elas têm aumentado a sua presença no mundo tecnológico após um "período de hibernação", desde a popularização do conceito de Metaverse assim como a entrada das grandes empresas informáticas como a Apple e a Google num mercado onde a Realidade Virtual, Realidade Aumentada e Realidade Mista eram dominadas por empresas com menos experiência no desenvolvimento de sistemas (e.g. Meta), reconhecimento a nível mundial (e.g. HTC Vive), ou suporte financeiro e confiança do mercado. Esta tese tem como foco o estudo do potencial uso das tecnologias de Realidade Estendida de forma a promover Saúde Verde assim como seu uso em Hospitais Inteligentes, uma das variantes de Ambientes Inteligentes, incorporando Machine Learning e Computer Vision, como ferramenta de suporte e de melhoria de cuidados de saúde, tanto do ponto de vista do profissional de saúde como do paciente, através duma revisão literarária e análise da atualidade. Resultando na elaboração de um modelo conceptual com a sugestão de tecnologias a poderem ser usadas para alcançar esse cenário selecionadas pelo seu potencial, sendo posteriormente descrito o desenvolvimento de protótipos de partes do modelo conceptual para Óculos de Realidade Extendida como validação de conceito.With the Fourth Industrial Revolution, the spread of the Internet of Things, the advance in the areas of Artificial Intelligence and Machine Learning until the migration to Cloud Computing, the term "Intelligent Environments" increasingly ceases to be an idealization to become reality. Likewise, Extended Reality technologies have also increased their presence in the technological world after a "hibernation period", since the popularization of the Metaverse concept, as well as the entry of large computer companies such as Apple and Google into a market where Virtual Reality, Augmented Reality and Mixed Reality were dominated by companies with less experience in system development (e.g. Meta), worldwide recognition (e.g. HTC Vive) or financial support and trust in the market. This thesis focuses on the study of the potential use of Extended Reality technologies in order to promote GreenHealth as well as their use in Smart Hospitals, one of the variants of Smart Environments, incorporating Machine Learning and Computer Vision, as a tool to support and improve healthcare, both from the point of view of the health professional and the patient, through a literature review and analysis of the current situation. Resulting in the elaboration of a conceptual model with the suggestion of technologies that can be used to achieve this scenario selected for their potential, and then the development of prototypes of parts of the conceptual model for Extended Reality Headsets as concept validation

    Time-, Graph- and Value-based Sampling of Internet of Things Sensor Networks

    Get PDF
    corecore