2,128 research outputs found

    Inverse Reinforcement Learning in Large State Spaces via Function Approximation

    Get PDF
    This paper introduces a new method for inverse reinforcement learning in large-scale and high-dimensional state spaces. To avoid solving the computationally expensive reinforcement learning problems in reward learning, we propose a function approximation method to ensure that the Bellman Optimality Equation always holds, and then estimate a function to maximize the likelihood of the observed motion. The time complexity of the proposed method is linearly proportional to the cardinality of the action set, thus it can handle large state spaces efficiently. We test the proposed method in a simulated environment, and show that it is more accurate than existing methods and significantly better in scalability. We also show that the proposed method can extend many existing methods to high-dimensional state spaces. We then apply the method to evaluating the effect of rehabilitative stimulations on patients with spinal cord injuries based on the observed patient motions.Comment: Experiment update

    A Theory of Regularized Markov Decision Processes

    Full text link
    Many recent successful (deep) reinforcement learning algorithms make use of regularization, generally based on entropy or Kullback-Leibler divergence. We propose a general theory of regularized Markov Decision Processes that generalizes these approaches in two directions: we consider a larger class of regularizers, and we consider the general modified policy iteration approach, encompassing both policy iteration and value iteration. The core building blocks of this theory are a notion of regularized Bellman operator and the Legendre-Fenchel transform, a classical tool of convex optimization. This approach allows for error propagation analyses of general algorithmic schemes of which (possibly variants of) classical algorithms such as Trust Region Policy Optimization, Soft Q-learning, Stochastic Actor Critic or Dynamic Policy Programming are special cases. This also draws connections to proximal convex optimization, especially to Mirror Descent.Comment: ICML 201

    Difference of Convex Functions Programming Applied to Control with Expert Data

    Get PDF
    This paper reports applications of Difference of Convex functions (DC) programming to Learning from Demonstrations (LfD) and Reinforcement Learning (RL) with expert data. This is made possible because the norm of the Optimal Bellman Residual (OBR), which is at the heart of many RL and LfD algorithms, is DC. Improvement in performance is demonstrated on two specific algorithms, namely Reward-regularized Classification for Apprenticeship Learning (RCAL) and Reinforcement Learning with Expert Demonstrations (RLED), through experiments on generic Markov Decision Processes (MDP), called Garnets

    Meta Inverse Reinforcement Learning via Maximum Reward Sharing for Human Motion Analysis

    Get PDF
    This work handles the inverse reinforcement learning (IRL) problem where only a small number of demonstrations are available from a demonstrator for each high-dimensional task, insufficient to estimate an accurate reward function. Observing that each demonstrator has an inherent reward for each state and the task-specific behaviors mainly depend on a small number of key states, we propose a meta IRL algorithm that first models the reward function for each task as a distribution conditioned on a baseline reward function shared by all tasks and dependent only on the demonstrator, and then finds the most likely reward function in the distribution that explains the task-specific behaviors. We test the method in a simulated environment on path planning tasks with limited demonstrations, and show that the accuracy of the learned reward function is significantly improved. We also apply the method to analyze the motion of a patient under rehabilitation.Comment: arXiv admin note: text overlap with arXiv:1707.0939
    corecore