66 research outputs found

    Adapting In-Game Agent Behavior by Observation of Players Using Learning Behavior Trees

    Get PDF
    In this paper we describe Learning Behavior Trees, an extension of the popular game AI scripting technique. Behavior Trees provide an effective way for expert designers to describe complex, in-game agent behaviors. Scripted AI captures human intuition about the structure of behavioral decisions, but suffers from brittleness and lack of the natural variation seen in human players. Learning Behavior Trees are designed by a human designer, but then are trained by observation of players performing the same role, to introduce human-like variation to the decision structure. We show that, using this model, a single hand-designed Behavior Tree can cover a wide variety of player behavior variations in a simplified Massively Multiplayer Online Role-Playing Game

    Modelling Human-like Behavior through Reward-based Approach in a First-Person Shooter Game

    Get PDF
    We present two examples of how human-like behavior can be implemented in a model of computer player to improve its characteristics and decision-making patterns in video game. At first, we describe a reinforcement learning model, which helps to choose the best weapon depending on reward values obtained from shooting combat situations.Secondly, we consider an obstacle avoiding path planning adapted to the tactical visibility measure. We describe an implementation of a smoothing path model, which allows the use of penalties (negative rewards) for walking through \bad" tactical positions. We also study algorithms of path nding such as improved I-ARA* search algorithm for dynamic graph by copying human discrete decision-making model of reconsidering goals similar to Page-Rank algorithm. All the approaches demonstrate how human behavior can be modeled in applications with significant perception of intellectual agent actions

    Understanding players' map exploration styles

    Full text link
    Copyright 2016 ACM. Exploration is an essential part of play in modern video games. It refers to the discovery-based activities, in which players explore mechanisms, as well as spatiality of virtual world. Exploration games and games with exploration plots are booming in gamer communities. In this paper, we focus on spatial exploration, which is central to play in role-playing games (RPG) and real time strategy (RTS) games. We investigate the game-playing behaviors of human players in exploration games, so as to discover behavior patterns and understand gamer styles. The intention is to contribute to the design and development of believable agents. We conducted an experiment where 25 participants played three types of exploration games. In-game data, think-aloud data, questionnaire responses and post-game interview data were collected to gain a deeper understanding of exploration preferences. We used thematic analysis to analyze data and mapped out four game exploration archetypes: Wanderers, Seers, Pathers and Targeters. An analysis from the four highlight aspects: strategy, reasoning, conception and hesitation, is conducted to investigate the behavioral traits of these four archetypes

    Demystifying Social Bots: On the Intelligence of Automated Social Media Actors

    Get PDF
    Recently, social bots, (semi-) automatized accounts in social media, gained global attention in the context of public opinion manipulation. Dystopian scenarios like the malicious amplification of topics, the spreading of disinformation, and the manipulation of elections through “opinion machines” created headlines around the globe. As a consequence, much research effort has been put into the classification and detection of social bots. Yet, it is still unclear how easy an average online media user can purchase social bots, which platforms they target, where they originate from, and how sophisticated these bots are. This work provides a much needed new perspective on these questions. By providing insights into the markets of social bots in the clearnet and darknet as well as an exhaustive analysis of freely available software tools for automation during the last decade, we shed light on the availability and capabilities of automated profiles in social media platforms. Our results confirm the increasing importance of social bot technology but also uncover an as yet unknown discrepancy of theoretical and practically achieved artificial intelligence in social bots: while literature reports on a high degree of intelligence for chat bots and assumes the same for social bots, the observed degree of intelligence in social bot implementations is limited. In fact, the overwhelming majority of available services and software are of supportive nature and merely provide modules of automation instead of fully fledged “intelligent” social bots

    A Panorama of Artificial and Computational Intelligence in Games

    Full text link

    Supplementing Frequency Domain Interpolation Methods for Character Animation

    Get PDF
    The animation of human characters entails difficulties exceeding those met simulating objects, machines or plants. A person's gait is a product of nature affected by mood and physical condition. Small deviations from natural movement are perceived with ease by an unforgiving audience. Motion capture technology is frequently employed to record human movement. Subsequent playback on a skeleton underlying the character being animated conveys many of the subtleties of the original motion. Played-back recordings are of limited value, however, when integration in a virtual environment requires movements beyond those in the motion library, creating a need for the synthesis of new motion from pre-recorded sequences. An existing approach involves interpolation between motions in the frequency domain, with a blending space defined by a triangle network whose vertices represent input motions. It is this branch of character animation which is supplemented by the methods presented in this thesis, with work undertaken in three distinct areas. The first is a streamlined approach to previous work. It provides benefits including an efficiency gain in certain contexts, and a very different perspective on triangle network construction in which they become adjustable and intuitive user-interface devices with an increased flexibility allowing a greater range of motions to be blended than was possible with previous networks. Interpolation-based synthesis can never exhibit the same motion variety as can animation methods based on the playback of rearranged frame sequences. Limitations such as this were addressed by the second phase of work, with the creation of hybrid networks. These novel structures use properties of frequency domain triangle blending networks to seamlessly integrate playback-based animation within them. The third area focussed on was distortion found in both frequency- and time-domain blending. A new technique, single-source harmonic switching, was devised which greatly reduces it, and adds to the benefits of blending in the frequency domain

    Evolving Agents using NEAT to Achieve Human-Like Play in FPS Games

    Get PDF
    Artificial agents are commonly used in games to simulate human opponents. This allows players to enjoy games without requiring them to play online or with other players locally. Basic approaches tend to suffer from being unable to adapt strategies and often perform tasks in ways very few human players could ever achieve. This detracts from the immersion or realism of the gameplay. In order to achieve more human-like play more advanced approaches are employed in order to either adapt to the player's ability level or to cause the agent to play more like a human player can or would. Utilizing artificial neural networks evolved using the NEAT methodology, we attempt to produce agents to play a FPS-style game. The goal is to see if the approach produces well-playing agents with potentially human-like behaviors. We provide a large number of sensors and motors to the neural networks of a small population learning through co-evolution. Ultimately we find that the approach has limitations and is generally too slow for practical application, but holds promise for future developments. Many extensions are presented which could improve the results and reduce training times. The agents learned to perform some basic tasks at a very rough level of skill, but were not competitive at even a beginner level

    Real-time generation and adaptation of social companion robot behaviors

    Get PDF
    Social robots will be part of our future homes. They will assist us in everyday tasks, entertain us, and provide helpful advice. However, the technology still faces challenges that must be overcome to equip the machine with social competencies and make it a socially intelligent and accepted housemate. An essential skill of every social robot is verbal and non-verbal communication. In contrast to voice assistants, smartphones, and smart home technology, which are already part of many people's lives today, social robots have an embodiment that raises expectations towards the machine. Their anthropomorphic or zoomorphic appearance suggests they can communicate naturally with speech, gestures, or facial expressions and understand corresponding human behaviors. In addition, robots also need to consider individual users' preferences: everybody is shaped by their culture, social norms, and life experiences, resulting in different expectations towards communication with a robot. However, robots do not have human intuition - they must be equipped with the corresponding algorithmic solutions to these problems. This thesis investigates the use of reinforcement learning to adapt the robot's verbal and non-verbal communication to the user's needs and preferences. Such non-functional adaptation of the robot's behaviors primarily aims to improve the user experience and the robot's perceived social intelligence. The literature has not yet provided a holistic view of the overall challenge: real-time adaptation requires control over the robot's multimodal behavior generation, an understanding of human feedback, and an algorithmic basis for machine learning. Thus, this thesis develops a conceptual framework for designing real-time non-functional social robot behavior adaptation with reinforcement learning. It provides a higher-level view from the system designer's perspective and guidance from the start to the end. It illustrates the process of modeling, simulating, and evaluating such adaptation processes. Specifically, it guides the integration of human feedback and social signals to equip the machine with social awareness. The conceptual framework is put into practice for several use cases, resulting in technical proofs of concept and research prototypes. They are evaluated in the lab and in in-situ studies. These approaches address typical activities in domestic environments, focussing on the robot's expression of personality, persona, politeness, and humor. Within this scope, the robot adapts its spoken utterances, prosody, and animations based on human explicit or implicit feedback.Soziale Roboter werden Teil unseres zukünftigen Zuhauses sein. Sie werden uns bei alltäglichen Aufgaben unterstützen, uns unterhalten und uns mit hilfreichen Ratschlägen versorgen. Noch gibt es allerdings technische Herausforderungen, die zunächst überwunden werden müssen, um die Maschine mit sozialen Kompetenzen auszustatten und zu einem sozial intelligenten und akzeptierten Mitbewohner zu machen. Eine wesentliche Fähigkeit eines jeden sozialen Roboters ist die verbale und nonverbale Kommunikation. Im Gegensatz zu Sprachassistenten, Smartphones und Smart-Home-Technologien, die bereits heute Teil des Lebens vieler Menschen sind, haben soziale Roboter eine Verkörperung, die Erwartungen an die Maschine weckt. Ihr anthropomorphes oder zoomorphes Aussehen legt nahe, dass sie in der Lage sind, auf natürliche Weise mit Sprache, Gestik oder Mimik zu kommunizieren, aber auch entsprechende menschliche Kommunikation zu verstehen. Darüber hinaus müssen Roboter auch die individuellen Vorlieben der Benutzer berücksichtigen. So ist jeder Mensch von seiner Kultur, sozialen Normen und eigenen Lebenserfahrungen geprägt, was zu unterschiedlichen Erwartungen an die Kommunikation mit einem Roboter führt. Roboter haben jedoch keine menschliche Intuition - sie müssen mit entsprechenden Algorithmen für diese Probleme ausgestattet werden. In dieser Arbeit wird der Einsatz von bestärkendem Lernen untersucht, um die verbale und nonverbale Kommunikation des Roboters an die Bedürfnisse und Vorlieben des Benutzers anzupassen. Eine solche nicht-funktionale Anpassung des Roboterverhaltens zielt in erster Linie darauf ab, das Benutzererlebnis und die wahrgenommene soziale Intelligenz des Roboters zu verbessern. Die Literatur bietet bisher keine ganzheitliche Sicht auf diese Herausforderung: Echtzeitanpassung erfordert die Kontrolle über die multimodale Verhaltenserzeugung des Roboters, ein Verständnis des menschlichen Feedbacks und eine algorithmische Basis für maschinelles Lernen. Daher wird in dieser Arbeit ein konzeptioneller Rahmen für die Gestaltung von nicht-funktionaler Anpassung der Kommunikation sozialer Roboter mit bestärkendem Lernen entwickelt. Er bietet eine übergeordnete Sichtweise aus der Perspektive des Systemdesigners und eine Anleitung vom Anfang bis zum Ende. Er veranschaulicht den Prozess der Modellierung, Simulation und Evaluierung solcher Anpassungsprozesse. Insbesondere wird auf die Integration von menschlichem Feedback und sozialen Signalen eingegangen, um die Maschine mit sozialem Bewusstsein auszustatten. Der konzeptionelle Rahmen wird für mehrere Anwendungsfälle in die Praxis umgesetzt, was zu technischen Konzeptnachweisen und Forschungsprototypen führt, die in Labor- und In-situ-Studien evaluiert werden. Diese Ansätze befassen sich mit typischen Aktivitäten in häuslichen Umgebungen, wobei der Schwerpunkt auf dem Ausdruck der Persönlichkeit, dem Persona, der Höflichkeit und dem Humor des Roboters liegt. In diesem Rahmen passt der Roboter seine Sprache, Prosodie, und Animationen auf Basis expliziten oder impliziten menschlichen Feedbacks an
    • …
    corecore