995 research outputs found

    Message Passing Algorithms for Compressed Sensing

    Full text link
    Compressed sensing aims to undersample certain high-dimensional signals, yet accurately reconstruct them by exploiting signal characteristics. Accurate reconstruction is possible when the object to be recovered is sufficiently sparse in a known basis. Currently, the best known sparsity-undersampling tradeoff is achieved when reconstructing by convex optimization -- which is expensive in important large-scale applications. Fast iterative thresholding algorithms have been intensively studied as alternatives to convex optimization for large-scale problems. Unfortunately known fast algorithms offer substantially worse sparsity-undersampling tradeoffs than convex optimization. We introduce a simple costless modification to iterative thresholding making the sparsity-undersampling tradeoff of the new algorithms equivalent to that of the corresponding convex optimization procedures. The new iterative-thresholding algorithms are inspired by belief propagation in graphical models. Our empirical measurements of the sparsity-undersampling tradeoff for the new algorithms agree with theoretical calculations. We show that a state evolution formalism correctly derives the true sparsity-undersampling tradeoff. There is a surprising agreement between earlier calculations based on random convex polytopes and this new, apparently very different theoretical formalism.Comment: 6 pages paper + 9 pages supplementary information, 13 eps figure. Submitted to Proc. Natl. Acad. Sci. US

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems

    Get PDF
    Crowdsourcing systems, in which numerous tasks are electronically distributed to numerous "information piece-workers", have emerged as an effective paradigm for human-powered solving of large scale problems in domains such as image classification, data entry, optical character recognition, recommendation, and proofreading. Because these low-paid workers can be unreliable, nearly all such systems must devise schemes to increase confidence in their answers, typically by assigning each task multiple times and combining the answers in an appropriate manner, e.g. majority voting. In this paper, we consider a general model of such crowdsourcing tasks and pose the problem of minimizing the total price (i.e., number of task assignments) that must be paid to achieve a target overall reliability. We give a new algorithm for deciding which tasks to assign to which workers and for inferring correct answers from the workers' answers. We show that our algorithm, inspired by belief propagation and low-rank matrix approximation, significantly outperforms majority voting and, in fact, is optimal through comparison to an oracle that knows the reliability of every worker. Further, we compare our approach with a more general class of algorithms which can dynamically assign tasks. By adaptively deciding which questions to ask to the next arriving worker, one might hope to reduce uncertainty more efficiently. We show that, perhaps surprisingly, the minimum price necessary to achieve a target reliability scales in the same manner under both adaptive and non-adaptive scenarios. Hence, our non-adaptive approach is order-optimal under both scenarios. This strongly relies on the fact that workers are fleeting and can not be exploited. Therefore, architecturally, our results suggest that building a reliable worker-reputation system is essential to fully harnessing the potential of adaptive designs.Comment: 38 pages, 4 figur
    corecore