5,707 research outputs found

    Weight Distribution for Non-binary Cluster LDPC Code Ensemble

    Get PDF
    In this paper, we derive the average weight distributions for the irregular non-binary cluster low-density parity-check (LDPC) code ensembles. Moreover, we give the exponential growth rate of the average weight distribution in the limit of large code length. We show that there exist (2,dc)(2,d_c)-regular non-binary cluster LDPC code ensembles whose normalized typical minimum distances are strictly positive.Comment: 12pages, 6 figures, To be presented in ISIT2013, Submitted to IEICE Trans. Fundamental

    Local and Global Trust Based on the Concept of Promises

    Get PDF
    We use the notion of a promise to define local trust between agents possessing autonomous decision-making. An agent is trustworthy if it is expected that it will keep a promise. This definition satisfies most commonplace meanings of trust. Reputation is then an estimation of this expectation value that is passed on from agent to agent. Our definition distinguishes types of trust, for different behaviours, and decouples the concept of agent reliability from the behaviour on which the judgement is based. We show, however, that trust is fundamentally heuristic, as it provides insufficient information for agents to make a rational judgement. A global trustworthiness, or community trust can be defined by a proportional, self-consistent voting process, as a weighted eigenvector-centrality function of the promise theoretical graph

    Universality of the Distribution Functions of Random Matrix Theory. II

    Full text link
    This paper is a brief review of recent developments in random matrix theory. Two aspects are emphasized: the underlying role of integrable systems and the occurrence of the distribution functions of random matrix theory in diverse areas of mathematics and physics.Comment: 17 pages, 3 figure

    Random Matrix Theory of the Energy-Level Statistics of Disordered Systems at the Anderson Transition

    Full text link
    We consider a family of random matrix ensembles (RME) invariant under similarity transformations and described by the probability density P(H)=exp[TrV(H)]P({\bf H})= \exp[-{\rm Tr}V({\bf H})]. Dyson's mean field theory (MFT) of the corresponding plasma model of eigenvalues is generalized to the case of weak confining potential, V(ϵ)A2ln2(ϵ)V(\epsilon)\sim {A\over 2}\ln ^2(\epsilon). The eigenvalue statistics derived from MFT are shown to deviate substantially from the classical Wigner-Dyson statistics when A<1A<1. By performing systematic Monte Carlo simulations on the plasma model, we compute all the relevant statistical properties of the RME with weak confinement. For Ac0.4A_c\approx 0.4 the distribution function of the energy-level spacings (LSDF) of this RME coincides in a large energy window with the LSDF of the three dimensional Anderson model at the metal-insulator transition. For the same AcA_c, the variance of the number of levels, n2n2\langle n^2\rangle -\langle n\rangle^2, in an interval containing n\langle n\rangle levels on average, grows linearly with n\langle n\rangle, and its slope is equal to 0.32±0.020.32 \pm 0.02, which is consistent with the value found for the Anderson model at the critical point.Comment: 32 pages, REVTEX 3.0, 10 postscript (uuencoded) figures include
    corecore