6,612 research outputs found

    Van Kampen Colimits and Path Uniqueness

    Full text link
    Fibred semantics is the foundation of the model-instance pattern of software engineering. Software models can often be formalized as objects of presheaf topoi, i.e, categories of objects that can be represented as algebras as well as coalgebras, e.g., the category of directed graphs. Multimodeling requires to construct colimits of models, decomposition is given by pullback. Compositionality requires an exact interplay of these operations, i.e., diagrams must enjoy the Van Kampen property. However, checking the validity of the Van Kampen property algorithmically based on its definition is often impossible. In this paper we state a necessary and sufficient yet efficiently checkable condition for the Van Kampen property to hold in presheaf topoi. It is based on a uniqueness property of path-like structures within the defining congruence classes that make up the colimiting cocone of the models. We thus add to the statement "Being Van Kampen is a Universal Property" by Heindel and Soboci\'{n}ski the fact that the Van Kampen property reveals a presheaf-based structural uniqueness feature

    Being Van Kampen in Presheaf Topoi is a Uniqueness Property

    Get PDF
    Fibred semantics is the foundation of the model-instance pattern of software engineering. Software models can often be formalized as objects of presheaf topoi, e.g. the category of directed graphs. Multimodeling requires to construct colimits of diagrams of single models and their instances, while decomposition of instances of the multimodel is given by pullback. Compositionality requires an exact interplay of these operations, i.e., the diagrams must enjoy the Van Kampen property. However, checking the validity of the Van Kampen property algorithmically based on its definition is often impossible. In this paper we state a necessary and sufficient yet easily checkable condition for the Van Kampen property to hold for diagrams in presheaf topoi. It is based on a uniqueness property of path-like structures within the defining congruence classes that make up the colimiting cocone of the models. We thus add to the statement "Being Van Kampen is a Universal Property" by Heindel and Sobocinski presented at CALCO 2009 the fact that the Van Kampen property reveals a set-based structural uniqueness feature

    Zariski-van Kampen theorem for higher homotopy groups

    Full text link
    This paper gives an extension of the classical Zariski-van Kampen theorem describing the fundamental groups of the complements of plane singular curves by generators and relations. It provides a procedure for computation of the first non-trivial higher homotopy groups of the complements of singular projective hypersurfaces in terms of the homotopy variation operators introduced here.Comment: 37 pages, LaTeX2e with amsmath, amsthm and amscd packages. To appear in J. Inst. Math. Jussieu (2003) with the first proof of Theorem 7.1 significantly developped and new references added. Due to copyright restrictions, this final version will only be available at Cambridge Journals Online (http://journals.cambridge.org) when published. Thus the content of the paper here is the same as that of version 1 of 3 March 200

    On the axioms for adhesive and quasiadhesive categories

    Full text link
    A category is adhesive if it has all pullbacks, all pushouts along monomorphisms, and all exactness conditions between pullbacks and pushouts along monomorphisms which hold in a topos. This condition can be modified by considering only pushouts along regular monomorphisms, or by asking only for the exactness conditions which hold in a quasitopos. We prove four characterization theorems dealing with adhesive categories and their variants.Comment: 20 pages; v2 final version, contains more details in some proof

    Existential questions in (relatively) hyperbolic groups {\it and} Finding relative hyperbolic structures

    Full text link
    This arXived paper has two independant parts, that are improved and corrected versions of different parts of a single paper once named "On equations in relatively hyperbolic groups". The first part is entitled "Existential questions in (relatively) hyperbolic groups". We study there the existential theory of torsion free hyperbolic and relatively hyperbolic groups, in particular those with virtually abelian parabolic subgroups. We show that the satisfiability of systems of equations and inequations is decidable in these groups. In the second part, called "Finding relative hyperbolic structures", we provide a general algorithm that recognizes the class of groups that are hyperbolic relative to abelian subgroups.Comment: Two independant parts 23p + 9p, revised. To appear separately in Israel J. Math, and Bull. London Math. Soc. respectivel

    A homotopy double groupoid of a Hausdorff space II: a van Kampen theorem

    Full text link
    This paper is the second in a series exploring the properties of a functor which assigns a homotopy double groupoid with connections to a Hausdorff space. We show that this functor satisfies a version of the van Kampen theorem, and so is a suitable tool for nonabelian, 2-dimensional, local-to-global problems. The methods are analogous to those developed by Brown and Higgins for similar theorems for other higher homotopy groupoids. An integral part of the proof is a detailed discussion of commutative cubes in a double category with connections, and a proof of the key result that any composition of commutative cubes is commutative. These results have recently been generalised to all dimensions by Philip Higgins.Comment: 19 pages, uses picte

    Characterizing Van Kampen Squares via Descent Data

    Full text link
    Categories in which cocones satisfy certain exactness conditions w.r.t. pullbacks are subject to current research activities in theoretical computer science. Usually, exactness is expressed in terms of properties of the pullback functor associated with the cocone. Even in the case of non-exactness, researchers in model semantics and rewriting theory inquire an elementary characterization of the image of this functor. In this paper we will investigate this question in the special case where the cocone is a cospan, i.e. part of a Van Kampen square. The use of Descent Data as the dominant categorical tool yields two main results: A simple condition which characterizes the reachable part of the above mentioned functor in terms of liftings of involved equivalence relations and (as a consequence) a necessary and sufficient condition for a pushout to be a Van Kampen square formulated in a purely algebraic manner.Comment: In Proceedings ACCAT 2012, arXiv:1208.430
    • …
    corecore