1,135 research outputs found

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    Redocumentation through design pattern recovery:: an investigation and an implementation

    Get PDF
    In this thesis, two methods are developed in an aid to help users capture valuable design information and knowledge and reuse them. They are the design pattern recovery (DPR) method and pattern-based redocumentation (PBR) method. The DPR method is for matching up metrics of patterns with patterns themselves in order to capture valuable design information. Patterns are used as a container for storing the information. Two new metrics, i.e., p-value and s-value are introduced. They are obtained by analysing product metrics statistically. Once patterns have been detected from a system, the system can be redocumented using these patterns. Some existing XML (extensible Markup Language) technologies are utilised in order to realise the PRB method. Next, a case study is carried out to validate the soundness and usefulness of the DPR method. Finally, some conclusions drawn from this research are summarised, and further work is suggested for the researchers in software engineering

    A Formal Architectural Description Language based on Symbolic Transition Systems and Modal Logic

    Get PDF
    International audienceComponent Based Software Engineering has now emerged as a discipline for system development. After years of battle between component platforms, the need for means to abstract away from specific implementation details is now recognized. This paves the way for model driven approaches (such as MDE) but also for the more older Architectural Description Language (ADL) paradigm. In this paper we present KADL, an ADL based on the Korrigan formal language which supports the following features: integration of fully formal behaviours and data types, expressive component composition mechanisms through the use of modal logic, specification readability through graphical notations, and dedicated architectural analysis techniques. Key Words: Architectural Description Language, Component Based Software Engineering, Mixed Formal Specifications, Symbolic Transition Systems, Abstract Data Types, Modal Logic Glue, Graphical Notations, Verification

    Augmenting DSVL Meta-Tools with Pattern Specification, Instantiation and Reuse

    Get PDF
    This paper describes an approach for using patterns in domain-specific visual language (DSVL) meta-tools. Our approach facilitates DSVL development via high level design-for-reuse and design-by-reuse pattern modelling tools. It provides a simple visual pattern modelling language that is used in parallel with DSVL meta-model specifications for modelling and reusing DSVL structural and behavioural design patterns. It also provides tool support for instantiating and visualising structural patterns, as well as executing behavioural patterns on DSVL model instances

    Multi-paradigm modelling for cyber–physical systems: a descriptive framework

    Get PDF
    The complexity of cyber–physical systems (CPSS) is commonly addressed through complex workflows, involving models in a plethora of different formalisms, each with their own methods, techniques, and tools. Some workflow patterns, combined with particular types of formalisms and operations on models in these formalisms, are used successfully in engineering practice. To identify and reuse them, we refer to these combinations of workflow and formalism patterns as modelling paradigms. This paper proposes a unifying (Descriptive) Framework to describe these paradigms, as well as their combinations. This work is set in the context of Multi-Paradigm Modelling (MPM), which is based on the principle to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s) and workflows. The purpose of the Descriptive Framework presented in this paper is to serve as a basis to reason about these formalisms, workflows, and their combinations. One crucial part of the framework is the ability to capture the structural essence of a paradigm through the concept of a paradigmatic structure. This is illustrated informally by means of two example paradigms commonly used in CPS: Discrete Event Dynamic Systems and Synchronous Data Flow. The presented framework also identifies the need to establish whether a paradigm candidate follows, or qualifies as, a (given) paradigm. To illustrate the ability of the framework to support combining paradigms, the paper shows examples of both workflow and formalism combinations. The presented framework is intended as a basis for characterisation and classification of paradigms, as a starting point for a rigorous formalisation of the framework (allowing formal analyses), and as a foundation for MPM tool development

    FV-RAD : a practical framework for rapid application development

    Get PDF
    Estágio realizado na OPT-Optimização e Planeamento de Transportes, S.ATese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 200

    Automatic architectural enforcement

    Get PDF
    Automatic architectural enforcement would be very beneficial especially in product line development using open source practices where there is very limited or no access to the architects and the architecture is of paramount importance. However, current techniques for modelling software architecture do not support the modelling of architectural design rules which means that architectural enforcement is achieved by manual reviews. This paper addresses this problem by proposing how architectural design rules could be expressed in UML in a meta-model for the system model
    • …
    corecore